Primitive Dyck words as an invariant class for pattern avoidance

S.Bilotta E. Grazzini E.Pergola

Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze

GASCom 2012

Table of contents

(1) Definitions and notations

- Binary words avoiding a pattern \mathfrak{p}
- Primitive Dyck words
- Succession rules
(2) Motivations
(3) Main Result
- The constructive algorithm
- Proof: idea
(4) Enumeration
(5) Generalization
(6) Further developments

Binary words avoiding a pattern \mathfrak{p}

Let $F \subset\{0,1\}^{*}$ be the class of binary words ω such that $|\omega|_{0} \leq|\omega|_{1}$ for any $\omega \in F,|\omega|_{0}$ and $|\omega|_{1}$ are the number of zeroes and ones in ω, respectively.

Binary words avoiding a pattern \mathfrak{p}

Let $F \subset\{0,1\}^{*}$ be the class of binary words ω such that $|\omega|_{0} \leq|\omega|_{1}$ for any $\omega \in F,|\omega|_{0}$ and $|\omega|_{1}$ are the number of zeroes and ones in ω, respectively.

We are interested in studying the subclass $F^{[p]} \subset F$ of binary words excluding a given pattern $\mathfrak{p}=p_{0} \ldots p_{h-1} \in\{0,1\}^{h}$, i.e. the words $\omega \in F^{[p]}$ that do not admit a sequence of consecutive indices $i, i+1, \ldots, i+h-1$ such that $\omega_{i} \omega_{i+1} \ldots \omega_{i+h-1}=p_{0} p_{1} \ldots p_{h-1}$.

Binary words avoiding a pattern \mathfrak{p}

Let $F \subset\{0,1\}^{*}$ be the class of binary words ω such that $|\omega|_{0} \leq|\omega|_{1}$ for any $\omega \in F,|\omega|_{0}$ and $|\omega|_{1}$ are the number of zeroes and ones in ω, respectively.

We are interested in studying the subclass $F^{[p]} \subset F$ of binary words excluding a given pattern $\mathfrak{p}=p_{0} \ldots p_{h-1} \in\{0,1\}^{h}$, i.e. the words $\omega \in F^{[p]}$ that do not admit a sequence of consecutive indices $i, i+1, \ldots, i+h-1$ such that $\omega_{i} \omega_{i+1} \ldots \omega_{i+h-1}=p_{0} p_{1} \ldots p_{h-1}$.

- R. Sedgewick \& P. Flajolet (1996): An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading, MA.

Example

Example

Example

Primitive Dyck words

Let us denote by \mathcal{D}_{j}^{p} the set of $2 j$-length primitive Dyck words. We study the class $F^{[p]}$ where $\mathfrak{p} \in \mathcal{D}_{j}^{p}$, for any fixed $j \geq 1$.

It is well known that a Dyck word δ is a binary string such that $|\delta|_{0}=|\delta|_{1}$ and no prefix of δ has more zeroes than ones. A path associated to a Dyck word (that is a Dyck path) lies above, but may intersect, the x-axis.

In this work, we consider the so called primitive Dyck paths, that is Dyck paths which intersect the x-axis at the beginning and at the end, exclusively.

Succession rules

A succession rule Ω is a system constituted by an axiom (a), with $a \in \mathbb{N}$, and a set of productions of the form:

$$
(k) \rightsquigarrow\left(e_{1}(k)\right)\left(e_{2}(k)\right) \ldots\left(e_{k}(k)\right), \quad k \in \mathbb{N}, e_{i}: \mathbb{N} \rightarrow \mathbb{N} .
$$

A production constructs, for any given label (k), its successors $\left(e_{1}(k)\right),\left(e_{2}(k)\right), \ldots,\left(e_{k}(k)\right)$.

Compact notation:

Succession rules

A succession rule Ω is a system constituted by an axiom (a), with $a \in \mathbb{N}$, and a set of productions of the form:

$$
(k) \rightsquigarrow\left(e_{1}(k)\right)\left(e_{2}(k)\right) \ldots\left(e_{k}(k)\right), \quad k \in \mathbb{N}, e_{i}: \mathbb{N} \rightarrow \mathbb{N} .
$$

A production constructs, for any given label (k), its successors $\left(e_{1}(k)\right),\left(e_{2}(k)\right), \ldots,\left(e_{k}(k)\right)$.

Compact notation:

$$
\left\{\begin{array}{c}
(a) \\
(k)
\end{array} \rightsquigarrow\left(e_{1}(k)\right)\left(e_{2}(k)\right) \ldots\left(e_{k}(k)\right)\right.
$$

Succession rules

A succession rule Ω is a system constituted by an axiom (a), with $a \in \mathbb{N}$, and a set of productions of the form:

$$
(k) \rightsquigarrow\left(e_{1}(k)\right)\left(e_{2}(k)\right) \ldots\left(e_{k}(k)\right), \quad k \in \mathbb{N}, e_{i}: \mathbb{N} \rightarrow \mathbb{N} .
$$

A production constructs, for any given label (k), its successors $\left(e_{1}(k)\right),\left(e_{2}(k)\right), \ldots,\left(e_{k}(k)\right)$.

Compact notation:

$$
\left\{\begin{array}{c}
(a) \\
(k)
\end{array} \rightsquigarrow\left(e_{1}(k)\right)\left(e_{2}(k)\right) \ldots\left(e_{k}(k)\right)\right.
$$

- F. R. K. Chung, R. L. Graham, V. E. Hoggatt \& M. Kleimann (1978): The number of Baxter permutations. Journal of Combinatorial Theory, Series A 24, pp. 382-394.

Generating trees

The rule Ω can be represented by means of a generating tree, that is a rooted tree whose vertices are the labels of Ω; where (a) is the label of the root and each node labelled (k) has k sons labelled $\left(e_{1}(k)\right),\left(e_{2}(k)\right), \ldots,\left(e_{k}(k)\right)$, respectively. As usual, the root lies at level 0 , and a node lies at level n if its parent lies at level $n-1$.

If a succession rule describes the growth of a class of combinatorial objects, then a given object can be coded by the sequence of labels met from the root of the generating tree to the object itself.

Generating trees

The rule Ω can be represented by means of a generating tree, that is a rooted tree whose vertices are the labels of Ω; where (a) is the label of the root and each node labelled (k) has k sons labelled $\left(e_{1}(k)\right),\left(e_{2}(k)\right), \ldots,\left(e_{k}(k)\right)$, respectively. As usual, the root lies at level 0 , and a node lies at level n if its parent lies at level $n-1$.

If a succession rule describes the growth of a class of combinatorial objects, then a given object can be coded by the sequence of labels met from the root of the generating tree to the object itself.

Jumping succession rules

A jumping succession rule is a set of productions acting on the objects of a class and producing sons at different levels.

Compact notation:

Jumping succession rules

A jumping succession rule is a set of productions acting on the objects of a class and producing sons at different levels.

Compact notation:

$$
\left\{\begin{aligned}
(a) & \\
(k) & \stackrel{1}{\rightsquigarrow}\left(e_{1}(k)\right)\left(e_{2}(k)\right) \ldots\left(e_{k}(k)\right), \\
(k) & \underset{\rightsquigarrow}{\rightsquigarrow}\left(d_{1}(k)\right)\left(d_{2}(k)\right) \ldots\left(d_{k}(k)\right) .
\end{aligned}\right.
$$

Jumping succession rules

A jumping succession rule is a set of productions acting on the objects of a class and producing sons at different levels.

Compact notation:

$$
\left\{\begin{aligned}
(a) & \\
(k) & \stackrel{1}{\rightsquigarrow}\left(e_{1}(k)\right)\left(e_{2}(k)\right) \ldots\left(e_{k}(k)\right), \\
(k) & j \\
\rightsquigarrow & \left(d_{1}(k)\right)\left(d_{2}(k)\right) \ldots\left(d_{k}(k)\right) .
\end{aligned}\right.
$$

- L. Ferrari, E. Pergola, R. Pinzani \& S. Rinaldi (2003): Jumping succession rules and their generating functions. Discrete Mathematics 271, pp. 29-50.

Marked jumping succession rules

A marked jumping succession rule is a jumping succession rule where marked labels are considered together with usual ones. In this way a generating tree can support negative values if we consider a node labelled (\bar{k}) as opposed to a node labelled (k) lying on the same level.

Compact notation:

Marked jumping succession rules

A marked jumping succession rule is a jumping succession rule where marked labels are considered together with usual ones. In this way a generating tree can support negative values if we consider a node labelled (\bar{k}) as opposed to a node labelled (k) lying on the same level.

Compact notation:

$$
\left\{\begin{array}{rc}
(a) & \\
(k) & \underset{\sim}{\rightsquigarrow}\left(e_{1}(k)\right)\left(e_{2}(k)\right) \ldots\left(e_{k}(k)\right), \\
(k) & j \\
\rightsquigarrow & \left(d_{1}(k)\right)\left(\overline{d_{2}(k)}\right) \ldots\left(\overline{d_{k}(k)}\right) .
\end{array}\right.
$$

Marked jumping succession rules

Compact notation:

$$
\left\{\begin{array}{l}
(a) \\
(k) \\
\underset{\rightsquigarrow}{\rightsquigarrow}\left(e_{1}(k)\right)\left(e_{2}(k)\right) \ldots\left(e_{k}(k)\right), \\
(k) \\
\underset{\rightsquigarrow}{j}\left(\overline{d_{1}(k)}\right)\left(\overline{d_{2}(k)}\right) \ldots\left(\overline{d_{k}(k)}\right) .
\end{array}\right.
$$

This describes also the rules for (\bar{k}) :

$$
\left\{\begin{array}{l}
(\bar{k}) \\
\underset{\sim}{\rightsquigarrow}\left(\overline{e_{1}(k)}\right)\left(\overline{e_{2}(k)}\right) \ldots\left(\overline{e_{k}(k)}\right), \\
(\bar{k}) \\
\underset{\rightsquigarrow}{\rightsquigarrow}\left(d_{1}(k)\right)\left(d_{2}(k)\right) \ldots\left(d_{k}(k)\right) .
\end{array}\right.
$$

We remark that $(\overline{\bar{k}})=(k)$.

Example

$$
\left\{\begin{array}{lll}
(0) & & \\
(k) & \stackrel{1}{\sim}(k+1)(k) \cdots(1)(0)(0) & k \geq 0 \\
(k) & \underset{\sim}{\sim}(\overline{k+1})(\bar{k}) \cdots(\overline{1})(\overline{0})(\overline{0}) & k \geq 0
\end{array}\right.
$$

level
0

$(\overline{\bar{k}})=(k)$

Example

$$
\left\{\begin{array}{lll}
(0) & & \\
(k) & \stackrel{1}{\sim}(k+1)(k) \cdots(1)(0)(0) & k \geq 0 \\
(k) & \stackrel{\sim}{\sim}(\overline{k+1})(\bar{k}) \cdots(\overline{1})(\overline{0})(\overline{0}) & k \geq 0
\end{array}\right.
$$

level
0

Cardinality

2

$(\overline{\bar{k}})=(k)$

Motivations

Let $F \subset\{0,1\}^{*}$ be the class of binary words w such that $|w|_{0} \leq|w|_{1}$ for any $w \in F$.

For example, in order to generate the language $F^{[p]}$ an "ad hoc" grammar (depending on the forbidden pattern \mathfrak{p}) should be defined. Consequently, for each pattern \mathfrak{p} a different generating function enumerating the words in $F^{[\mathfrak{p}]}$ must to be computed.

Our aim is to determine a constructive algorithm proposing a more unified approach. The algorithm bases on a succession rule which allows us to obtain a parametric generating function for the enumeration of each classes $F^{[p]}$, according to the number of ones. Such enumeration does not depend on the shape of the forbidden pattern \mathfrak{p}.

Theorem

Theorem
The generating tree of the paths in $F^{[p]}$, where $\mathfrak{p} \in \mathcal{D}_{j}^{p}$, according to the number of rise steps, is isomorphic to the tree having its root labelled (0) and recursively defined by the succession rule:

$$
\begin{cases}(k) \underset{\sim}{\underset{j}{j}}(k+1)(k) \ldots(1)\left(0_{2}\right)\left(0_{1}\right) & k \geq 0 \\ (0) \underset{\rightsquigarrow}{\underset{0_{2}}{*}} & \\ (k) \underset{\rightsquigarrow}{\rightsquigarrow}(\bar{k})(\overline{k-1}) \ldots(\overline{1})\left(\overline{0_{2}}\right)\left(\overline{0_{1}}\right) & k \geq 1\end{cases}
$$

The constructive algorithm: First step

$$
(k) \stackrel{1}{\leadsto}(k+1)(k) \ldots(1)\left(0_{2}\right)\left(0_{1}\right)
$$

The constructive algorithm: First step

$$
(k) \stackrel{1}{\leadsto}(k+1)(k) \ldots(1)\left(0_{2}\right)\left(0_{1}\right)
$$

(k)

The constructive algorithm: First step

$$
(k) \stackrel{1}{\leadsto}(k+1)(k) \ldots(1)\left(0_{2}\right)\left(0_{1}\right)
$$

The constructive algorithm: First step

$$
(k) \stackrel{1}{\leadsto}(k+1)(k) \ldots(1)\left(0_{2}\right)\left(0_{1}\right)
$$

The constructive algorithm: First step

$$
(k) \stackrel{1}{\leadsto}(k+1)(k) \ldots(1)\left(0_{2}\right)\left(0_{1}\right)
$$

The constructive algorithm: First step

$$
(k) \stackrel{1}{\leadsto}(k+1)(k) \ldots(1)\left(0_{2}\right)\left(0_{1}\right)
$$

(k)

$(k+1)$

(k)

(1)

The constructive algorithm: First step

The constructive algorithm: First step

The constructive algorithm: First step

The constructive algorithm: a marked forbidden pattern

We define a marked forbidden pattern \mathfrak{p} as a pattern $\mathfrak{p} \in \mathcal{D}_{j}^{p}$ whose steps can not be divided, they must lie always in that defined sequence.
We say that a point is strictly contained in a marked forbidden pattern if it is between two steps of the forbidden pattern itself.
We denote a marked forbidden pattern \mathfrak{p} by drawing its minimal bounding rectangle B.

The constructive algorithm: First step

(0) $\left.\dot{\sim} \overline{0_{2}}\right)$

The constructive algorithm: First step

$\left.(0) \dot{\sim} \overline{0_{2}}\right)$

(0)

The constructive algorithm: First step

(0) $\dot{j}^{\dot{\left(0_{2}\right)}}$

(0)

$\overline{\left(0_{2}\right)}$

The constructive algorithm: First step

(0) $\overline{\left(0_{2}\right)}$

The constructive algorithm: First step

$(k) \stackrel{j}{\rightsquigarrow} \overline{(k)} \overline{(k-1)} \cdots \overline{(1)} \overline{\left(0_{2}\right)} \overline{\left(0_{1}\right)}$

The constructive algorithm: First step

$$
(k) \stackrel{j}{\rightsquigarrow} \overline{(k)} \overline{(k-1)} \cdots \overline{(1)} \overline{\left(0_{2}\right)} \overline{\left(0_{1}\right)}
$$

The constructive algorithm: First step

$$
(k) \stackrel{j}{\rightsquigarrow} \overline{(k)} \overline{(k-1)} \cdots \overline{(1)} \overline{\left(0_{2}\right)} \overline{\left(0_{1}\right)}
$$

The constructive algorithm: First step

$$
(k) \stackrel{j}{\rightsquigarrow} \overline{(k)} \overline{(k-1)} \cdots \overline{(1)} \overline{\left(0_{2}\right)} \overline{\left(0_{1}\right)}
$$

The constructive algorithm: First step

$$
(k) \stackrel{j}{\sim}(\bar{k})(\overline{k-1}) \cdots \overline{(1)} \overline{\left(0_{2}\right)} \overline{\left(0_{1}\right)}
$$

The constructive algorithm: First step

$$
(k) \stackrel{j}{\sim}(\bar{k})(\overline{k-1}) \ldots \overline{(1)} \overline{\left(0_{2}\right)} \overline{\left(0_{1}\right)}
$$

The constructive algorithm: First step

$$
(k) \stackrel{j}{\rightsquigarrow} \overline{(k)} \overline{(k-1)} \cdots \overline{(1)} \overline{\left(0_{2}\right)} \overline{\left(0_{1}\right)}
$$

The constructive algorithm: First step

$$
(k) \stackrel{j}{\leadsto} \overline{(k)} \overline{(k-1)} \cdots \overline{(1)} \overline{\left(0_{2}\right)} \overline{\left(0_{1}\right)}
$$

The constructive algorithm: First step

$$
(k) \stackrel{j}{\rightsquigarrow} \overline{(k)} \overline{(k-1)} \cdots \overline{(1)} \overline{\left(0_{2}\right)} \overline{\left(0_{1}\right)}
$$

(1)
$?$
$\overline{\left(0_{1}\right)}$

Problem

Lattice paths which end on the x-axis by a rise step are never obtained.

The constructive algorithm: Second step

First action in order to obtain the label $\left(0_{1}\right)$

$\omega^{\prime}=v \varphi$, being φ is the rightmost suffix in ω^{\prime} beginning from the x-axis and strictly remaining above the x-axis.

The constructive algorithm: Second step

First action in order to obtain the label $\left(0_{1}\right)$

$\omega^{\prime}=v \varphi$, being φ is the rightmost suffix in ω^{\prime} beginning from the x-axis and strictly remaining above the x-axis.

The constructive algorithm: Second step - case 1

φ does not contain any marked forbidden pattern

The constructive algorithm: Second step - case 1

φ does not contain any marked forbidden pattern

The constructive algorithm: Second step - case 1

φ does not contain any marked forbidden pattern

The constructive algorithm: Second step - case 2

φ contains at least one marked forbidden pattern

- Find z the leftmost point in φ having highest ordinate and not strictly contained in a marked forbidden pattern.
- Apply the cut and paste operation.

The constructive algorithm: Second step - case 2

φ contains at least one marked forbidden pattern

- Find z the leftmost point in φ having highest ordinate and not strictly contained in a marked forbidden pattern.
- Apply the cut and paste operation.

The constructive algorithm: Second step - case 2

φ contains at least one marked forbidden pattern

The constructive algorithm: Second step - case 2

φ contains at least one marked forbidden pattern

The constructive algorithm: Second step - case 2

φ contains at least one marked forbidden pattern

The constructive algorithm: Second step - case 2

φ contains at least one marked forbidden pattern

The constructive algorithm: Second step - case 2

φ contains at least one marked forbidden pattern

The constructive algorithm: Second step - case 2

φ contains at least one marked forbidden pattern

The constructive algorithm: Second step - case 2

φ contains at least one marked forbidden pattern

The constructive algorithm: Second step - case 2

Cut and paste

The constructive algorithm: Second step - case 2

Cut and paste

The constructive algorithm: Second step - case 2

Cut and paste

The constructive algorithm: Second step - case 2

Cut and paste

The constructive algorithm: Second step - case 2

Cut and paste

The constructive algorithm: Second step - case 2

Cut and paste

The constructive algorithm: Second step - case 2

Cut and paste

The constructive algorithm: Second step - case 2

Reverse of cut and paste

The constructive algorithm: Second step - case 2

Reverse of cut and paste

The constructive algorithm: Second step - case 2

Reverse of cut and paste

The constructive algorithm: Second step - case 2

Reverse of cut and paste

The constructive algorithm: Second step - case 2

Reverse of cut and paste

The constructive algorithm: Second step - case 2

Reverse of cut and paste

The constructive algorithm: Second step - case 2

Reverse of cut and paste

The constructive algorithm: Second step - case 2

Reverse of cut and paste

The constructive algorithm: Second step - case 2

Reverse of cut and paste

Example of the complete algorithm

Proof: idea

The described algorithm is a construction for the set $F^{[\mathfrak{p}]}$ according to the number of rise steps. This means that all the paths in F with n rise steps are obtained. Moreover, for each obtained path ψ in $F \backslash F^{[p]}$, having C forbidden patterns, with n rise steps and (k) as last label of the associated code, a path ψ^{\prime} in $F \backslash F^{[p]}$ having C forbidden patterns, with n rise steps, and (\bar{k}) as last label of the associated code is also generated having the same shape as ψ but such that the last forbidden pattern is marked if it is not in ψ and vice-versa.

(1) $(0)(1)(2)(1)$

(1)(0)(1)(1)

$\overline{(0)(1)(2)(1)}$

$\overline{(0)}(1)(1)$

Enumeration

Let Z be the set of paths whose instances are coded by a sequence of labels in the generating tree ending by a non-marked zero, S be the set of paths whose instances are coded by a sequence of labels ending by a marked zero, N be the set of paths whose instances are coded by a sequence of labels ending by a non-marked $k \geq 1$ and M be the set of paths whose instances are coded by a sequence of labels ending by a marked $k \geq 1$.
Then $F^{[p]}=(Z \backslash S) \cup(N \backslash M)$.
$Z(x, 1)=\sum_{\omega \in Z} x^{n(\omega)} y^{0}=1+2 x Z(x, 1)+2 x N(x, 1)+x^{j} S(x, 1)+2 x^{j} M(x, 1)$,
$S(x, 1)=\sum_{\omega \in S} x^{n(\omega)} y^{0}=2 x S(x, 1)+2 x M(x, 1)+x^{j} Z(x, 1)+2 x^{j} N(x, 1)$,
$N(x, y)=\sum_{\omega \in N} x^{n(\omega)} y^{h(\omega)}=x y Z(x, 1)+\sum_{\omega \in N} \sum_{i=1}^{h(\omega)+1} x^{n(\omega)+1} y^{i}+\sum_{\omega \in M} \sum_{i=1}^{h(\omega)} x^{n(\omega)+j} y^{i}$,
$M(x, y)=\sum_{\omega \in M} x^{n(\omega)} y^{h(\omega)}=x y S(x, 1)+\sum_{\omega \in M} \sum_{i=1}^{h(\omega)+1} x^{n(\omega)+1} y^{i}+\sum_{\omega \in N} \sum_{i=1}^{h(\omega)} x^{n(\omega)+j} y^{i}$.

Enumeration

We obtain the generating function $F_{j}(x), j>1$, for the words $\omega \in F^{[p]}$ according to the number of ones:

$$
F_{j}(x)=\frac{y_{0}(x)-x^{j-1}}{\left(1-x^{j-1}\right)\left(1+x^{j}-2 x y_{0}(x)\right)}
$$

where

$$
y_{0}(x)=\frac{x^{j}+1-\sqrt{\left(x^{j}+1\right)^{2}-4 x}}{2 x}
$$

Enumeration

Let us remark that the generating function $F_{j}(x)$ depends only on the number of ones in the forbidden pattern. So, primitive Dyck words represent an invariant class for the enumeration of the words which avoid anyone of such a shape path. This means that all the sets in F with n ones avoiding a forbidden pattern $\mathfrak{p} \in \mathcal{D}_{j}^{p}$ have the same cardinality, independently on the shape of \mathfrak{p}.

Example

For any pattern \mathfrak{p} in D_{4}^{p}, the first numbers of the sequence enumerating the binary words in $F^{[p]}$, according to the number of ones, are:
$1,3,10,35,125,454,1671,6211,23261, \cdots$ being

$$
F_{4}(x)=\frac{1-x^{4}-\sqrt{x^{8}+2 x^{4}+1-4 x}}{2 x\left(1-x^{3}\right) \sqrt{x^{8}+2 x^{4}+1-4 x}}
$$

the associated generating function.

Generalization

Given a set \mathcal{Q} of forbidden patterns, we say that the pattern \mathfrak{p}_{ℓ} is redundant in \mathcal{Q} if there is a pattern \mathfrak{p}_{h} in \mathcal{Q} that is a sub-path of \mathfrak{p}_{ℓ}.
Let $\mathcal{Q}=\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{m}\right\}$ be a set of non redundant forbidden patterns where each pattern \mathfrak{p}_{i} belongs to $\mathcal{D}_{j_{i}}^{p}$, that is a primitive Dyck path with j_{i} rise steps.

Generalization

By using the previous notation, we have:
$Z(x, 1)=1+2 x Z(x, 1)+2 x N(x, 1)+\left(x^{j_{1}}+\cdots+x^{j_{m}}\right) S(x, 1)+2\left(x^{j_{1}}+\cdots+x^{j_{m}}\right) M(x, 1)$,
$S(x, 1)=2 x S(x, 1)+2 x M(x, 1)+\left(x^{j_{1}}+\cdots+x^{j_{m}}\right) Z(x, 1)+2\left(x^{j_{1}}+\cdots+x^{j_{m}}\right) N(x, 1)$,
$N(x, y)=$
$x y Z(x, 1)+\sum_{\omega \in N} \sum_{i=1}^{h(\omega)+1} x^{n(\omega)+1} y^{i}+\sum_{\omega \in M} \sum_{i=1}^{h(\omega)} x^{n(\omega)+j_{1}} y^{i}+\cdots+\sum_{\omega \in M} \sum_{i=1}^{h(\omega)} x^{n(\omega)+j_{m}} y^{i}$,
$M(x, y)=$
$x y S(x, 1)+\sum_{\omega \in M} \sum_{i=1}^{h(\omega)+1} x^{n(\omega)+1} y^{i}+\sum_{\omega \in N} \sum_{i=1}^{h(\omega)} x^{n(\omega)+j_{1}} y^{i}+\cdots+\sum_{\omega \in N} \sum_{i=1}^{h(\omega)} x^{n(\omega)+j_{m}} y^{i}$.

Generalization

We obtain the generating function $F_{j_{1}, \ldots, j_{m}}(x)$ for the words $\omega \in F^{[\mathcal{Q}]}$ according to the number of ones:

$$
F_{j_{1}, \cdots, j_{m}}(x)=\frac{y_{0}(x)-x^{j_{1}-1}-\cdots-x^{j_{m}-1}}{\left(1-x^{j_{1}-1}-\cdots-x^{j_{m}-1}\right)\left(1+x^{j_{1}}+\cdots+x^{j_{m}}-2 x y_{0}(x)\right)},
$$

where

$$
y_{0}(x)=\frac{1+x^{j_{1}}+\cdots+x^{j_{m}}-\sqrt{\left(x^{j_{1}}+\cdots+x^{j_{m}}+1\right)^{2}-4 x}}{2 x} .
$$

Further developments

1. Study other forbidden patterns \mathfrak{p}
2. Expand the alphabet $\{0,1\}$
3. Find a unified approach for pattern avoidance construction and enumeration

Further developments

1. Study other forbidden patterns \mathfrak{p}
2. Expand the alphabet $\{0,1\}$
3. Find a unified approach for pattern avoidance construction and enumeration

Further developments

1. Study other forbidden patterns \mathfrak{p}
2. Expand the alphabet $\{0,1\}$
3. Find a unified approach for pattern avoidance construction and enumeration

Thanks for your attention

