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Section 1: Introduction-Preliminaries



Definition of Basic (or q−) Hypergeometric Series for 0 < q < 1

The q-analogue of a hypergeometric series

rFs(a1, . . . , ar ; b1, . . . , bs ; z) =
∞∑
n=0

(a1)n · · · (ar )n
(b1)n · · · (bs)n

zn

n!

is

rφs(a1, . . . , ar ; b1, . . . , bs ; q, z) =
∞∑
n=0

(a1, · · · , ar ; q)n zn

(b1, · · · , bs ; q)n(q; q)n
[(−1)nq(n2)]s−r+1,

where

(a1, · · · , ar ; q)n = (a1; q) · · · (ar ; q)n, (a; q)n =
n∏

j=1

(1− aqj−1), (a; q)0 = 1.



q-Hypergeometric Series Discrete Distributions and the Associated Scheme
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What is the Continuous Limiting Behaviour of the q-Hypergeometric Series
Discrete Distributions ?
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Section 2: Main Results

Subsection 2.1: Continuous Limiting Behaviour of q-Binomial Distribution



A q-Binomial Distribution

Kemp and Kemp (1991) defined a q-analogue of the binomial distribution with
probability function in the form

fX (x) =

(
n

x

)
q

q(x2)θx
n∏

j=1

(1 + θqj−1)−1, x = 0, 1, . . . , n, (1)

where θ > 0, 0 < q < 1.
The mean and variance of the q-binomial distribution (1) are given respectively
by

µ =
n∑

j=1

θqj−1

1 + θqj−1

σ2 =
n∑

j=1

θqj−1

(1 + θqj−1)2
. (2)



An Arising Question

The q-binomial distribution(1), for q constant, has finite mean and
variance when n→∞.

The asymptotic normality in the sense of the DeMoivre-Laplace classical
limit theorem can not be concluded, as in the case of the ordinary
binomial distribution.

Kyriakoussis and Vamvakari (2012), for q constant, established pontwise
convergence of the q-binomial distribution (1) to a Stieltjes Wigert
distribution as n→∞.

Let q = q(n) be a sequence of n with q(n)→ 1 as n→∞, emerging
among others in statistical mechanics and analysis of probabilistic
algorithms. How this assumption will affect the asymptotic behaviour of
the q-binomial distribution (1)?



An asymptotic expansion of the q-factorial number of order n

Theorem 1. The q-factorial numbers of order n, [n]q!, where

(A) q = q(n) with q(n)→ 1 as n→∞ and q(n)n = Ω(1)
or
(B) q = q(n) with q(n)n = o(1)

have the following asymptotic expansion for n→∞

[n]q! = (2π)1/2q(n2) exp(−g(r))
[
rg
′
(r) + r 2g

′′
(r)
]1/2

rn

·

[
1 +

N∑
k′=1

Sk′(r) (qn(1− q))k
′

+ O
(

(qn(1− q))
N+1

2

)]−1

(3)

where N is a positive integer, r is the real solution of the equation

rg
′
(r) = n



Theorem 1 cont.

and

Sk′(r) =
r k
′

(2k ′)!

2k′∑
j=1

B2k′,j

(
α1(r), . . . , α2k′(r)

)Γ(j + k ′ + 1/2)

π1/2
,

αk′(r) =

[
2−1
(
1 + rg

′′
(r)

g
′

(r)

)]−k′/2−1

ik
′+2∑k′+2

ν=1 S(k ′ + 2, ν)rνg (ν)(r)

g ′(r)(k ′ + 1)(k ′ + 2)r k′/2+1
(4)

with Bk′,j

(
ψ1, . . . , ψk′

)
the partial Bell polynomials, S(k ′, j) the Stirling

numbers of the second kind and i2 = −1.



Sketch of Proof

The derived estimate for the q-factorial numbers of order n, is based on
the analysis of the q-Exponential function

Eq((1− q)x) =
∞∑
n=0

q(n2)

(q; q)n
(1− q)nxn

=
∞∑
n=0

q(n2)

[n]q!
xn =

∞∏
j=1

(1 + (1− q)xqj−1) (5)

which is the ordinary generating function (g.f.) of the numbers q(n2)
[n]q !

,
n = 0, 1, 2, . . ..
Rewriting Eq((1− q)x) as follows

Eq(x) = exp
(
g(x)

)
, (6)

where

g(x) =
∞∑
j=1

log
(

1 + ((1− q)x)qj−1
)
. (7)

Because of the large dominant singularities of the generating function
Fm,q(x), a well suited method for analyzing this is the saddle point
method.



We shall study the asymptotic behaviour of the q-factorial numbers of
order n, [n]q!, by expressing them via Cauchy’s integral formula that gives
the coefficients of a power series:

q(n2)

[n]q!
=

1

2πi

∫
|x|=r

exp(g(x))

xn+1
dx (8)

where the contour of integration is taken to be a circle of radius r . This
integral will be estimated with the saddle point method. The saddle point
is defined by the equation xg ′(x) = n + 1.
It turns out that it is convenient to switch to polar coordinates, setting
x = re iθ. Then the original integral becomes

q(n2)

[n]q!
=

exp(g(r))

rn2π

∫ π

−π
exp

[
g(re iθ)− g(r)− inθ

]
dθ. (9)

In accordance with the saddle point method principles, we choose the
radius r to be the solution of rg ′(r) = n. Setting
G(θ) = g(re iθ)− g(r)− inθ with a Maclaurin series expansion about
θ = 0 we have



G(θ) = −φ2 + φ2
∞∑

k′=1

αk′(r)
(ψφ)k

′

k ′!
(10)

where

φ =

[
1

2

(
rg
′
(r) + r 2g

′′
(r)
)]1/2

θ, ψ =
[
g
′
(r)
]− 1

2
(11)

and

αk′(r) =

[
2−1
(
1 + rg

′′
(r)

g′(r)

)]−k′/2−1

g (k′+2)(re iθ)|θ=0

g ′(r)(k ′ + 1)(k ′ + 2)r k′/2+1
, (12)

where

g (k′+2)(re iθ)|θ=0 =
( d

dθ

)k′+2
g(re iθ)|θ=0.

The absence of a linear term in θ indicates a saddle point. The function |eG(θ)|
is unimodal with its peak at θ = 0.



An estimation of theq-factorial numbers of order n, [n]q! with q defined by
conditions (A) or (B) should naturally proceed by isolating separately small
portions of the contour (corresponding to x near the real axis) as follows.
(A) For q = q(n) with q(n)n = Ω(1) we set

I1 =
1√
2π

∫ δ

−δ
exp [G(θ)] dθ,

I2 =
1√
2π

∫ 2π−δ

δ

exp [G(θ)] dθ, (13)

and choose δ such that the following conditions are true (see [?]):
(C1) nδ2 →∞, that is δ >> n−1/2

(C2) nδ3 → 0, that is δ << n−1/3,
where “<<” means “much smaller than”. A suitable choice for δ is n−3/8.
As |eG(θ)| decreases in [δ, π],

|eG(θ)| ≤ |eG(δ)|, δ ≤ θ ≤ 2π − δ. (14)

We will show in the sequel that from (C1) and (C2) it follows that eG(δ) is

exponentially small, being dominated by a term of the form e−O(n1/4).



Indeed we have

G(δ) ∼ −1

2

(
rg ′(r) + r 2g ′′(r)

)
δ2

or

G(δ) ∼ −1

2

(
rg ′(r) + r 2g ′′(r)

)
n−3/4. (15)

But

rg ′(r) + r 2g ′′(r) ∼ 1

log q−1
(q−n − 1)

or

rg ′(r) + r 2g ′′(r) ∼ (1− q)

log q−1
(qn−1 + qn−2 + · · ·+ 1). (16)

For q = q(n) with q(n)n = Ω(1) we get

G(δ) = O

(
−1

2
n1/4

)
. (17)

From which we find that

|I2| = O(eG(δ)) = O(e−
1
2
n1/4

). (18)

Thus, by (C1), δ has been taken large enough so that the central integral I1

“captures” most of the contribution, while the remainder integral I2 is
exponentially small by (18).



We now turn to the precise evaluation of the central integral I1. We have

I1 =
1

[rg ′(r) + r 2g ′′(r)]
1/2

1√
π∫ ε

−ε
exp

[
−φ2 + φ2

∞∑
k′=1

αk′(r)
(ψφ)k

′

k ′!

]
dφ (19)

where

ε =

[
1

2

(
rg
′
(r) + r 2g

′′
(r)
)]1/2

δ. (20)

Note that ε→∞ as n→∞, since

ε = n−3/8

[
1

2

(
rg
′
(r) + r 2g

′′
(r)
)]1/2

= n1/8

[
1

2

(
1 +

rg
′′

(r)

g ′(r)

)]1/2

> Cn1/8,

where C a positive constant.



(B) For q = q(n) with q(n)n = o(1) we set

I3 =
1√
2π

∫ δ

−δ
r−n exp [G(θ)] dθ,

I4 =
1√
2π

∫ 2π−δ

δ

r−n exp [G(θ)] dθ, (21)

and choose δ such that the conditions (C1) and (C2) are true. We suitably
select δ = n−3/8.
As |eG(θ)| decreases in [δ, π],

|eG(θ)| ≤ |eG(δ)|, δ ≤ θ ≤ 2π − δ. (22)

We will now show that eG(δ) is dominated by a term of the form O(1). Indeed,
form (C1), (C2), (15) and (16) it follows that

exp (G(δ)) ∼ exp

(
−1

2

1

log q−1
(1− qn)n−3/4

)
. (23)

From which we get

|I4| = O(r−neG(δ)) = O(qn2

e
− 1

2
1

log q−1 (1−qn)n−3/4

). (24)



Thus, for q = q(n) with q(n)n = o(1) the integral I4 is negligibly small. We
now turn to the precise evaluation of the central integral I3. Since

I3 =
1√
2π

∫ δ

−δ
r−n exp [G(θ)] dθ

=
1√
2π

∫ ∞
−∞

r−n exp [G(θ)] dθ − 1√
2π

∫ −δ
−∞

r−n exp [G(θ)] dθ

− 1√
2π

∫ ∞
δ

r−n exp [G(θ)] dθ

=
1√
2π

∫ ∞
−∞

r−n exp [G(θ)] dθ − O(2qn2

e
− 1

2
1

log q−1 (1−qn)n−3/4

)

we have

I3 =
r−n

[rg ′(r) + r 2g ′′(r)]
1/2

1√
π

∫ ∞
−∞

exp

[
−φ2 + φ2

∞∑
k=1

αk(r)
(ψφ)k

k!

]
dφ. (25)



We now unifiable proceed our proof for both conditions (A) and (B) and
working analogously as in Kyriakoussis and Vamvakari (2012) we get our
final estimation (3).



A q-Analogue of Stirling Type

In the previous theorem due to saddle point method principles, we have chosen
the radius r of the derived asymptotic expansion (3) to be the solution of
rg ′(r) = n. By solving this saddle point equation we obtain the following.

Corollary 1. The q-factorial numbers of order n, [n]q!, where

(A) q = q(n) with q(n)→ 1 as n→∞ and q(n)n = Ω(1)
or
(B) q = q(n) with q(n)n = o(1)

have the following asymptotic expansion for n→∞

[n]q! =
(2π(1− q))1/2

(q log q−1)1/2

q(n2)q−n/2[n]
n+1/2
1/q∏∞

j=1(1 + q(q−n − 1)qj−1)
(1 + O (qn(1− q))) .

(26)

Remark 1. Theorem 1(B) and Corollary 1(B) hold also for q constant.



q-Mean and q-Variance of the q-Binomial Distribution

Proposition 1(Kyriakoussis and Vamvakari(2012)). The q-mean and
q-variance of the q-binomial distribution are given respectively by

µq = E
(
[X ]1/q

)
= [n]q

θ

1 + θqn−1

and (27)

σ2
q = V

(
[X ]1/q

)
=

1− q

q
[n]2

q
θ2

(1 + θqn−1)2(1 + θqn−2)
+ [n]q

θ

(1 + θqn−1)(1 + θqn−2)
.



Pointwise Convergence of the q-Binomial Distribution to the
Stieltjes-Wigert Distribution

Theorem 2A(Kyriakoussis and Vamvakari(2012)). Let the p.f. of the
q-binomial distribution be of the form

fX (x) =

(
n

x

)
q

q(x2)θx
n∏

j=1

(1 + θqj−1)−1, x = 0, 1, . . . , n,

where θ = θn, n = 0, 1, 2, . . . such that θn = q−αn with 0 < a < 1 constant.
Then, for n→∞, the q-binomial distribution is approximated by a deformed
standardized continuous Stieltjes-Wigert distribution as follows

fX (x) ∼=
q1/8(log q−1)

1/2

(2π)1/2

(
q−3/2(1− q)1/2 [x ]1/q − µq

σq
+ q−1

)1/2

· exp

(
1

2 log q
log2

(
q−3/2(1− q)1/2 [x ]1/q − µq

σq
+ q−1

))
,

x ≥ 0. (28)



Fundamental Steps to Establish Pointwise Convergence in a q-Analogue
sense of the DeMoivre-Laplace Classical Limit Theorem

1 Substitution of the q-analogue of Stirling type ( 26) to the q-binomial
distribution (1)

2 Transition to variable [X ]1/q = 1−q−X

1−q−1

3 Perform q-standardization

Z =
[X ]1/q − µq

σq

with µq and σq given in (27)

4 Proceed with all needed asymptotics and algebraic manipulations



Local Limit Theorems for the q(n)-Binomial Distribution with
q(n)→ 1 as n→∞

Theorem 2B. Let the p.f. of the q-binomial distribution be of the form

fX (x) =

(
n

x

)
q

q(x2)θx
n∏

j=1

(1 + θqj−1)−1, x = 0, 1, . . . , n,

where θ = θn, n = 0, 1, 2, . . . such that θn = q−αn with 0 < a < 1 constant
and q = q(n) with q(n)→ 1 as n→∞ and q(n)n = o(1). Then, for n→∞,
the q-binomial distribution is approximated by a deformed standardized Gauss
distribution as follows

fX (x) ∼=
(1− q)µq

σq(2π)1/2
exp

(
−1

2

(
[x ]1/q − µq

σq

)2
)
, x ≥ 0 (29)

with

µq
∼=

q−αn

1− q
and σ2

q
∼=

q−αn

1− q
. (30)

Remark 2. Possible realizations of the sequence q(n), n = 0, 1, 2, . . .
considered in the above theorem 2 are among others the next two ones

q(n) = 1− 1

ln(n)
or q(n) = 1− 1

n1/2
.



Sketch of Proof

1 Substitution of the q-analogue of Stirling type ( 26), for q = q(n) with
q(n)→ 1 and q(n)n = o(1), to the q-binomial distribution (1)

fX (x) ∼=
(q log q−1)1/2

(2π(1− q))1/2

θn
x

(1− q)x

∏∞
j=1(1 + q(q−x − 1)qj−1)∏∞

j=1(1 + θnqj−1)q−x/2[x ]
x+1/2
1/q

. (31)

2 Transition to variable [X ] 1
q

= 1−q−X

1−q−1

3 Perform q-standardization

Z =
[X ]1/q − µq

σq

with µq and σq given asymptotically by (30)

4 Proceed with all needed asymptotics and algebraic manipulations

• [x ]1/q
∼=

θn
(1− q)

((
θn

(1− q)

)−1/2

z + 1

)

• q−x ∼= (q−1 − 1)

(
θn

(1− q)

)((
θn

(1− q)

)−1/2

z + 1

)
(32)



Sketch of Proof cont.

• x ∼=
1

log q−1
log

((
θn
q

)((
θn

(1− q)

)−1/2

z + 1

))
(33)

• [x ]x1/q ∼=
(

θn
1− q

)x

· exp(
1

log q−1
log

(
θn
q

((
θn

(1− q)

)1/2

z + 1

))
log

((
θn

(1− q)

)−1/2

z + 1

)
(34)

•
∞∏
j=1

(
1 + θn

((
θn

(1− q)

)−1/2

z + 1

)
qj−1

)

= exp

(
∞∑
j=1

log

(
1 + θn

((
θn

(1− q)

)−1/2

z + 1

)
qj−1

))
, (35)



Sketch of Proof cont.

where

∞∑
j=1

log

(
1 + θn

((
θn

(1− q)

)−1/2

z + 1

)
qj−1

)

=
1

2 log q−1
log2

(
θn

((
θn

(1− q)

)−1/2

z + 1

))

+Li2

 θn

((
θn

(1−q)

)−1/2

z + 1

)
θn

((
θn

(1−q)

)1/2

z + 1

)
+ 1


+

1

2
log

(
1 + θn

((
θn

(1− q)

)−1/2

z + 1

))

+
β2 log q

2

θn

((
θn

(1−q)

)−1/2

z + 1

)
1 + θn

((
θn

(1−q)

)−1/2

z + 1

) + O

(
1

θn

)
. (36)



Sketch of Proof cont.

•
∞∏
j=1

(
1 + θnqj−1

)
= exp

(
∞∑
j=1

log
(

1 + θnqj−1
))

,

where
∞∑
j=1

log
(

1 + θnqj−1
)

=
1

2 log q−1
log2 (θn) + Li2

(
θn

θn + 1

)
+

1

2
log (1 + θn)

+
β2 log q

2

θn
1 + θn

+ O(θ−1
n ) (37)

Applying all the previous the estimations (32)-(37) to the approximation (31),
carrying out all the necessary manipulations and by the assumptions θn = q−αn

with 0 < a < 1 constant and q = q(n) with q(n)→ 1 as n→∞ and
q(n)n = o(1), we derive our final asymptotic (29).



Theorem 2C. Let the p.f. of the q-binomial distribution be of the form

fX (x) =

(
n

x

)
q

q(x2)θx
n∏

j=1

(1 + θqj−1)−1, x = 0, 1, . . . , n,

where θ = θn, n = 0, 1, 2, . . . such that θn →∞, as n→∞ and q = q(n) with
q(n) = 1− β

n
, 0 < β ≤ 1. Then, for n→∞, the q-binomial distribution is

approximated by a deformed Gauss distribution as follows

fX (x) ∼=
((1− q)µq + 1)

σq

λ
1/2
β

(2π)1/2
exp

−1

2

 [x ]1/q − µq
σq

λ
1/2
β

2 , x ≥ 0, (38)

where

λβ =
(2− β) exp(β)− (1− β)(exp(β)− 1)

exp(β)
(39)

and with

µq
∼=

exp(β)− 1

β exp(β)
n and σ2

q
∼=

exp(β)− 1

β exp(β)
n.

Remark 3. For β = 1 and q = q(n) = 1− 1
n

the approximation of the above
theorem 3 is a deformed standardized Gauss distribution.



Section 2: Main Results

Subsection 2.2: Continuous Limiting Behaviour of Confluent 

q-Chu-Vandermonde Distributionsq-Chu-Vandermonde Distributions



Family of Confluent q-Chu-Vandermonde Hypergeometric Series
Distributions

Confluent q-Chu-Vandermonde sum

1φ1(b; c; q, c/b) =
∞∑
n=0

(b; q)n
(c; q)n(q; q)n

(−c/b)nq(n2)

=
(c/b; q)∞

(c; q)∞
, 0 < q < 1, (40)

(a; q)x =
x∏

j=1

(1− aqj−1), x = 0, 1, 2, . . . .

Rising up family of confuent q-Chu-Vandermonde series distributions for
suitable values of c and b

p(x) = P[X = x ] = fX (x) =

(b;q)x
(c;q)x (q;q)x

q(x2)(−c/b)x

(c/b;q)∞
(c;q)∞

, x = 0, 1, . . . (41)

(see Kemp(2005)).



Members of the Family of Confluent q-Chu-Vandermonde Series
Distributions

Confluent Parameters Support
q-Chu-Vandermonde b and c

Distributions

q-CCV-I b = −h, h > 0, 0 < c < 1 x = 0, 1, 2, . . .

q-CCV-II 0 < b < 1, c = −η, η > 0 x = 0, 1, 2, . . .

q-CCV-III b = q−n, n = 0, 1, . . ., 0 < c < 1 x = 0, 1, . . . , n



q-Factorial and Factorial Moments of the Confluent q-Chu-Vandermonde
Distributions

Proposition 2.The r -th order q-factorial moments of the family of
confluent q-Chu-Vandermonde distributions are given by

E([X ]r,1/q) =
(b; q)r

(1− q)r
(
− c

b

)r
, r = 1, 2, . . . . (42)

Proposition 3. The q-mean and q-variance of the family of confluent
q-Chu-Vandermonde distributions are given respectively by

µq = E
(
[X ]1/q

)
= − c

b

1− b

1− q

σ2
q = = V

(
[X ]1/q

)
=
(
− c

b

)2 1− b

q(1− q)
− c

b

1− b

1− q
. (43)

Proposition 4. The descending factorial k-th order moments of the r.v. X
of the family of q-Chu-Vandermonde distributions are given by

E((X )k) =
k!

(c/b; q)∞

∞∑
r=k

sq(r , k)(cqr ; q)∞
(q − 1)k−r [r ]1/q!

E([X ]r,1/q) 1φ1(bqr ; cqr ; q, cqr/b).

(44)



Pointwise Convergence of a family of confluent q-Chu-Vandermonde
distributions to Stieltjes-Wigert Distribution

Theorem 3A. Let the p.f. of the family of confluent q-Chu-Vandermonde
distributions be of the form

fX (x) =

(b;q)x
(c;q)x (q;q)x

q(x2)(−c/b)x

(c/b;q)∞
(c;q)∞

, x = 0, 1, . . . (45)

where b = bn, c = cn, n = 0, 1, 2, . . . , such that bn = o(1) and −cn/bn →∞,
as n→∞. Then, for n→∞, the p.f. fX (x), x = 0, 1, 2, . . . is approximated
by a deformed standardized continuous Stieltjes-Wigert distribution as follows

fX (x) ∼=
q1/8(log q−1)

1/2

(2π)1/2

(
q−3/2(1− q)1/2 [x ]1/q − µq

σq
+ q−1

)1/2

· exp

(
1

2 log q
log2

(
q−3/2(1− q)1/2 [x ]1/q − µq

σq
+ q−1

))
,

x ≥ 0. (46)



Sketch of Proof

1 Substitution of the q-analogue of Stirling type ( 26), for q constant,to the
p.f. of the family confluent q-Chu Vandermonde distribution (41)

fX (x) ∼=
(q log q−1)1/2

(2π(1− q))1/2

(−cn/bn)x

(1− q)x

∏∞
j=1(1 + q(q−x − 1)qj−1)(cn; q)∞

q−x/2[x ]
x+1/2
1/q (cn; q)x(cn/bn; q)∞

(47)

2 Transition to variable [X ] 1
q

= 1−q−X

1−q−1

3 Perform q-standardization

Z =
[X ]1/q − µq

σq

with µq and σq given by (43).
4 Proceed with all needed asymptotics

• [x ]1/q
∼= −

cn
bn

q

1− q
(q−3/2(1− q)1/2z + q−1)

• q−x ∼= −
cn
bn

(
q−3/2(1− q)z + q−1

)
(48)

• x ∼=
1

log q−1
log

(
− cn

bn

(
q−3/2(1− q)z + q−1

))
.



Sketch of Proof cont.

• [x ]x1/q ∼=
(
− cn

bn

)x (
1

1− q

)x

· exp

(
1

log q−1
log

(
− cn

bn

(
1− q

q3/2
z + q−1

))
log

(
q

(
1− q

q3/2
z + q−1

)))
(49)

•
∞∏
j=1

(
1− cn

bn

(
(1− q)1/2

q3/2
z + q−1

)
qj−1

)

= exp

(
∞∑
j=1

log

(
1− cn

bn

(
(1− q)1/2

q3/2
z + q−1

)
qj−1

))
, (50)



Sketch of Proof cont.

where

∞∑
j=1

log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

)
qj−1

)

=
1

2 log q−1
log2

(
− cn

bn

(
q−3/2(1− q)1/2z + q−1

))

+Li2

 − cn
bn

(
q−3/2(1− q)1/2z + q−1

)
− cn

bn
(q−3/2(1− q)1/2z + q−1) + 1


+

1

2
log

(
1− cn

bn

(
q−3/2(1− q)1/2z + q−1

))

+
β2 log q

2

(
− cn

bn

)(
q−3/2(1− q)1/2z + q−1

)
1− cn

bn
(q−3/2(1− q)1/2z + q−1)

+ O

(
−bn

cn

)
(51)



Sketch of Proof cont.

•
∞∏
j=1

(
1− cn

bn
qj−1

)
= exp

(
∞∑
j=1

log

(
1− cn

bn
qj−1

))
, (52)

where
∞∑
j=1

log

(
1− cn

bn
qj−1

)
=

1

2 log q−1
log2

(
− c

bn

)
+ Li2

(
− c

bn

− c
bn

+ 1

)

+
1

2
log

(
1− c

bn

)

+
β2 log q

2

(
− c

bn

)
1− c

bn

+ O

(
−bn

c

)
(53)



Sketch of Proof cont.

• (cn; q)∞/(cn; q)x = (cnqx ; q)∞ =
∞∏
j=1

(1− cnqxqj−1)

= exp

(
∞∑
j=1

log

(
1 + bn

(
q−3/2(1− q)1/2z + q−1

)−1

qj−1

))
, (54)

where
∞∑
j=1

log

(
1 + bn

(
q−3/2(1− q)1/2z + q−1

)−1

qj−1

)

=
1

2 log q−1
log2

(
bn

(
q−3/2(1− q)1/2z + q−1

)−1
)

+Li2

 bn

(
q−3/2(1− q)1/2z + q−1

)−1

bn (q−3/2(1− q)1/2z + q−1)
−1

+ 1


+

1

2
log

(
1 + bn

(
q−3/2(1− q)1/2z +

1

q

)−1
)



Sketch of Proof cont.

+
β2 log q

2

bn

(
q−3/2(1− q)1/2z + q−1

)−1

1 + bn (q−3/2(1− q)1/2z + q−1)
−1 + O (bn) (55)

Applying all the previous the estimations (48)-(55) to the approximation (47),
carrying out all the necessary manipulations and by the assumptions bn = o(1)
and −cn/bn →∞, as n→∞, we derive our final asymptotic (46).



Conclusions

Under the assumptions of the theorem 3A confluent q-Chu-Vandermonde
distributions I and II (41) converge to a continuous Stieltjes Wigert
distribution.

The confuent q-Chu-Vandermonde distribution III (41) does not have the
same continuous limiting behaviour since the assumption bn = o(1) of
theorem 3A does not hold.



Local Limit Theorems for the Confluent q(n)-Chu-Vandermonde
Hypergeometric Series Discrete Distributions I and II with q(n)→ 1 as
n→∞

Theorem 3B. Let the p.f. of the family of confluent q-Chu-Vandermonde
distributions be of the form

fX (x) =

(b;q)x
(c;q)x (q;q)x

q(x2)(−c/b)x

(c/b;q)∞
(c;q)∞

, x = 0, 1, . . . (56)

where b = bn, c = cn, n = 0, 1, 2, . . . , such that bn = o(1) and −cn/bn →∞,
as n→∞ and q = q(n) with q(n)→ 1 as n→∞ and q(n)n = o(1). Then, for
n→∞, the p.f. fX (x), x = 0, 1, 2, . . . is approximated by a deformed
standardized Gauss distribution as follows

fX (x) ∼=
(1− q)µq

σq(2π)1/2
exp

(
−1

2

(
[x ]1/q − µq

σq

)2
)
, x ≥ 0 (57)

with
µq
∼= −

cn
bn(1− q)

and σ2
q
∼= −

cn
bn(1− q)

. (58)

Remark 4. The above approximation (57) holds also for − cn
bn

= Θ
(
q−an

)
with

0 < a < 1.



Sketch of Proof

1 Substitution of the q-analogue of Stirling type ( 26), for q = q(n) with
q(n)→ 1 as n→∞ and q(n)n = o(1) ,to the p.f. of the family confluent
q-Chu Vandermonde distribution (41)

fX (x) ∼=
(q log q−1)1/2

(2π(1− q))1/2

(−cn/bn)x

(1− q)x

∏∞
j=1(1 + q(q−x − 1)qj−1)(cn; q)∞

q−x/2[x ]
x+1/2
1/q (cn; q)x(cn/bn; q)∞

.

(59)

2 Transition to variable [X ] 1
q

= 1−q−X

1−q−1

3 Perform q-standardization

Z =
[X ]1/q − µq

σq

with µq and σq given by (58).
4 Proceed with all needed asymptotics

• [x ]1/q
∼= −

cn
bn(1− q)

((
− cn

bn(1− q)

)−1/2

z + 1

)

• q−x ∼=
(
− cn

qbn

)((
− cn

bn(1− q)

)−1/2

z + 1

)
(60)



Sketch of Proof cont.

• x ∼=
1

log q−1
log

((
− cn

qbn

)((
− cn

bn(1− q)

)−1/2

z + 1

))
(61)

• [x ]x1/q ∼=
(
− cn

bn

)x (
1

1− q

)x

· exp(
1

log q−1
log

((
− cn

qbn

)((
− cn

bn(1− q)

)1/2

z + 1

))

· log

((
− cn

bn(1− q)

)−1/2

z + 1

)
) (62)

•
∞∏
j=1

(
1− cn

bn

((
− cn

bn(1− q)

)−1/2

z + 1

)
qj−1

)

= exp

(
∞∑
j=1

log

(
1− cn

bn

((
− cn

bn(1− q)

)−1/2

z + 1

)
qj−1

))
, (63)



Sketch of Proof cont.

where

∞∑
j=1

log

(
1− cn

bn

((
− cn

bn(1− q)

)−1/2

z + 1

)
qj−1

)

=
1

2 log q−1
log2

(
− cn

bn

((
− cn

bn(1− q)

)−1/2

z + 1

))

+Li2

 − cn
bn

((
− cn

bn(1−q)

)−1/2

z + 1

)
− cn

bn

((
− cn

bn(1−q)

)1/2

z + 1

)
+ 1


+

1

2
log

(
1− cn

bn

((
− cn

bn(1− q)

)−1/2

z + 1

))

+
β2 log q

2

(
− cn

bn

)((
− cn

bn(1−q)

)−1/2

z + 1

)
1− cn

bn

((
− cn

bn(1−q)

)−1/2

z + 1

) + O

(
−bn

cn

)
. (64)



Sketch of Proof cont.

• (cn; q)∞/(cn; q)x = (cnqx ; q)∞ =
∞∏
j=1

(1− cnqxqj−1)

= exp

(
∞∑
j=1

log

(
1 + qbn

((
− cn

bn(1− q)

)−1/2

z + 1

)−1

qj−1

))
,

(65)

where
∞∑
j=1

log

(
1 + qbn

((
− cn

bn(1− q)

)−1/2

z + 1

)−1

qj−1

)

=
1

2 log q−1
log2

(
qbn

((
− cn

bn(1− q)

)−1/2

z + 1

)−1)

+Li2


qbn

((
− cn

bn(1−q)

)−1/2

z + 1

)−1

qbn

((
− cn

bn(1−q)

)−1/2

z + 1

)−1

+ 1





Sketch of Proof cont.

+
1

2
log

(
1 + qbn

((
− cn

bn(1− q)

)−1/2

z + 1

)−1)

+
β2 log q

2

qbn

((
− cn

bn(1−q)

)−1/2

z + 1

)−1

1 + qbn

((
− cn

bn(1−q)

)−1/2

z + 1

)−1 + O (bn) . (66)

Applying all the previous the estimations (60)-(66) to the approximation (59),
carrying out all the necessary Taylor-Maclaurin expansions and manipulations
and by the assumptions bn = o(1) and −cn/bn →∞, as n→∞ and q = q(n)
with q(n)→ 1 as n→∞ and q(n)n = o(1) we derive our final asymptotic (57).



Theorem 3C. Let the p.f. of the family of confluent q-Chu-Vandermonde
distributions be of the form

fX (x) =

(b;q)x
(c;q)x (q;q)x

q(x2)(−c/b)x

(c/b;q)∞
(c;q)∞

, x = 0, 1, . . . (67)

where b = bn, c = cn, n = 0, 1, 2, . . . , such that bn = o(1) and q = q(n) with
q(n) = 1− β

n
, 0 < β ≤ 1. Then, for n→∞, the p.f. fX (x), x = 0, 1, 2, . . . is

approximated by a deformed standardized Gauss distribution as follows

fX (x) ∼=
(1− q)µq

σq(2π)1/2
exp

(
−1

2

(
[x ]1/q − µq

σq

)2
)
, x ≥ 0 (68)

with
µq
∼= −

cn

bβ
and σ2

q
∼= −

cn

bβ
.



Remark 5. For − cn
bn

= Θ
(
q−an

)
with 0 < a < 1 and q(n) = 1− β

n
,

0 < β ≤ 1, the p.f. of the family of confluent q-Chu-Vandermonde distributions
is approximated by a deformed Gauss distribution as follows

fX (x) ∼=
((1− q)µq + 1)

σq

λ
1/2
a,β

(2π)1/2
exp

−1

2

 [x ]1/q − µq
σq

λ
1/2
a,β

2 , x ≥ 0, (69)

where

λ a,β =
1

exp(aβ) + c

[
exp(aβ) + c − 1

exp(aβ) + c + 1
+ log

exp(aβ) + c + 1

exp(aβ) + c

]
(70)

and with

µq
∼=

exp(aβ) + c

β
n and σ2

q
∼=

exp(aβ) + c

β
n.

Remark 6. Under the assumptions of the above two theorems 4 and 5 the
probability functions I and II of the table 1 have the asymptotic approximations
(57) or (68). Note that we do not have the same conclusion for the p.f. III of
the table 1 since the assumption bn = o(1) does not hold. A continuous
analogue for the p.f. III established by Berg and Valent (1994). But there still
remains an open problem to find the asymptotic behaviour in the sense of
pointwise convergence of the confluent q-Chu-Vandermonde III, for both q
constant and q = q(n).



Applications

A modified q-Bessel distribution:A discrete approximation of the
confluent q-Chu-Vandermonde I, for bn = −hn = o(1), hn > 0 and cn = c
constant with 0 < c < 1, is a modified q-Bessel distribution with p.f.

pMB(x) =

q(x2)(c/hn)x

(c;q)x (q;q)x

(−c/hn ;q)∞
(c;q)∞

, x = 0, 1, . . . , (71)

1 The above modified q-Bessell distribution has Stieltjes-Wigert asymptotic
behaviour for n→∞ as in ( 46) with

µq =
c

1− q
h−1
n and σ2

q =
c2

q(1− q)
h−2
n −

c

1− q
h−1
n ,

where 0 < c < 1, hn > 0, n = 0, 1, 2, . . . with hn = o(1).
2 If q = q(n) with q(n)→ 1 as n→∞ and q(n)n = o(1) then, for n→∞,

the modified q-Besel distribution is approximated by by a deformed
standardized Gauss as in (57).

3 If q = q(n) with q(n) = 1− β
n
, 0 < β ≤ 1 then, for n→∞, the modified

q-Besel distribution is approximated by a deformed standardized Gauss as in
(68).



Applications

A Generalized q-Negative Binomial Distribution: The q-CCVII for
b = qn, n = 1, 2, . . . and η = q becomes a generalized q-negative binomial
distribution with p.f.

p(x) = P(X = x) =

(n+x−1
x )

q

(−q;q)x
q(x2)q−nx+x

(−q−n+1;q)∞
(−q;q)∞

, x = 0, 1, . . . (72)

1 The above q-negative binomial distribution has the Stieltjes-Wigert
asymptotic behaviour for n→∞ as in (46) with

µq = q−n+1 1− qn

1− q
and σ2

q = q−2n+1 1− qn

q(1− q)
+ q−n+1 1− qn

1− q
.

2 If q = q(n) with q(n)→ 1 as n→∞ and q(n)n = o(1) then, for n→∞,
the q-negative binomial distribution is approximated by a deformed
standardized Gauss as in (57).

3 If q = q(n) with q(n) = 1− β
n
, 0 < β ≤ 1 then, for n→∞, the

q-negative binomial distribution is approximated by a deformed standardized
Gauss as in (68).



Applications cont.

The Generalized Over / Underdispersed (O/U) Distribution: The
q-CCVII for b = qn and η = λqn becomes a generalized O/U distribution
with p.f.

p(x) = P(X = x) =
(−λqn; q)∞

(−λ; q)∞

(qn; q)xq(x2)λx

(−λq; q)x(q; q)x
, x = 0, 1, . . . (73)

(see Kemp(2005)).
1 The generalized O/U distribution for λ = λn →∞, has the Stieltjes-Wigert

asymptotic behaviour for n→∞ as in (46) with µq = λn/(1− q) and

σ2
q =

λ2
n

q(1−q)
+ λn

1−q
.

2 If q = q(n) with q(n)→ 1 as n→∞ and q(n)n = o(1) then, for n→∞,
the generalized O/U distribution is approximated by a deformed
standardized Gauss as in (57).

3 If q = q(n) with q(n) = 1− β
n
, 0 < β ≤ 1 then, for n→∞, the

generalized O/U distribution is approximated by a deformed standardized
Gauss as in (68).



Remark

The discrete approximation of the q-CCV-III distribution for n→∞, is given by

pqCCVIII (x) ∼= (c; q)∞
q2(x2)cx

(c; q)x(q; q)x
, x = 0, 1, . . . . (74)

Berg and Valent (1994), have proved that for q < a < 1/q, the above discrete
probability measure (74) has a continuous analogue counterpart family of
absolutely continuous probability measures on (0,∞) defined by

vSC (dx) =
p

π
{
( a

a− 1

(x/a; q)2
∞

(q/a; q)∞

)2
+ p2( (x ; q)2

∞

(q; q)∞(qa; q)∞

)2}−1dx , (75)

where the parameter p > 0 is given by

p = γ/(t2 + γ2)

with
γ2 = −t(1/ψ(a) + t),

where t belongs to the interval with endpoints 0 and −1/ψ(a) and is given by

ψ(a) = (q; q)∞

∞∑
j=0

qj

(a− qj)(q; q)j

with ψ(q+) =∞.



Section 3: Concluding Remarks

0 < q < 1 q = q(n)→ 1, n→∞,q(n)n = Ω(1) or q(n)n = o(1)

Non Terminating q-Gauss
Fundamenta Informanticae (2012)

Terminating q-Gauss
Fundamenta Informanticae (2012)

Confluent q-Chu 

Vandermonde
q-Binomial Type

MCAP(2012)

q-Poisson Type
JSPI(2010)

MCAP(2012)

q-Bessel Type

Stieltjes-Wigert

Non Terminating q-Gauss
Fundamenta Informanticae (2012)

Terminating q-Gauss
Fundamenta Informanticae (2012)

Confluent q-Chu 

Vandermonde
q-Binomial Type

MCAP(2012)

q-Poisson Type
JSPI(2010)

MCAP(2012)

q-Bessel Type

Gauss

Study of continuous limiting behaviour of confluent q-Chu-Vandermonde
III distribution

Study of continuous limiting behaviour of the members of families of non
terminating and terminating q-Gauss series distributions
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