Specification and Validation of Algorithms
Generating Planar Lehman Words

Alain Giorgetti Valerio Senni

University of Franche-Comté University of Rome “Tor Vergata”
FEMTO-ST Dept. of Computer Science,
Inria, CASSIS project Systems and Production

GASCom 2012

UNIVERSITE

‘U'EC @ /ensmm | B utbm Bivria

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
] [Planar Lehman words

Introduction

Motivations

D. Zeilberger: “Teach your computer how to do research!”

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
] [Planar Lehman words

Introduction

Motivations

D. Zeilberger: “Teach your computer how to do research!”

@ Computer-assisted design and validation of efficient
enumeration algorithms

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
] [Planar Lehman words

Introduction

Motivations

D. Zeilberger: “Teach your computer how to do research!”

@ Computer-assisted design and validation of efficient
enumeration algorithms

e From a high-level (formal) specification

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
] [Planar Lehman words

Introduction

Motivations

D. Zeilberger: “Teach your computer how to do research!”

@ Computer-assisted design and validation of efficient
enumeration algorithms

e From a high-level (formal) specification
e Whenever possible, optimization by transformations

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
Planar Lehman words

Introduction

Motivations

D. Zeilberger: “Teach your computer how to do research!”

@ Computer-assisted design and validation of efficient
enumeration algorithms
e From a high-level (formal) specification
e Whenever possible, optimization by transformations
e Otherwise, validation of efficient algorithms wrt their
specification
@ Intensive testing

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
Planar Lehman words

Introduction

Motivations

D. Zeilberger: “Teach your computer how to do research!”

@ Computer-assisted design and validation of efficient
enumeration algorithms

e From a high-level (formal) specification
e Whenever possible, optimization by transformations
e Otherwise, validation of efficient algorithms wrt their
specification
@ Intensive testing for early error detection
@ Computer proof of equivalence (formal reasoning)

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
Planar Lehman words

Introduction

Motivations

D. Zeilberger: “Teach your computer how to do research!”

@ Computer-assisted design and validation of efficient
enumeration algorithms

e From a high-level (formal) specification
e Whenever possible, optimization by transformations
e Otherwise, validation of efficient algorithms wrt their
specification
@ Intensive testing for early error detection
@ Computer proof of equivalence (formal reasoning)

@ Application to Combinatorics

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
| NN | Planar Lehman words

Combinatorial case study

Planar Lehman-Lenormand words
@ Code for rooted planar maps
@ Proposed by A. Lehman
@ Independently proposed by C. Lenormand [Cori75]
@ Studied by T. R. S. Walsh
@ Shuffles of two Dyck words with forbidden subwords

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
| NN | Planar Lehman words

Dyck words

Definition

@ A Dyck word of length 2n (size n) contains n pairs of
parentheses (possibly nested) which correctly match

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
| NN | Planar Lehman words

Dyck words

Definition

@ A Dyck word of length 2n (size n) contains n pairs of
parentheses (possibly nested) which correctly match

© Example: (()) C C C) ()))

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
| NN | Planar Lehman words

Dyck words

Definition

@ A Dyck word of length 2n (size n) contains n pairs of
parentheses (possibly nested) which correctly match

© Example: (()) (C C) ()))
@ Grammar: D:=¢|(D)D

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Introduction

Motivations
Planar Lehman words

Planar Lehman words

Definition

Planar Lehman word

A planar Lehman word (PLW) is any shuffle of a Dyck word on
the alphabet {(,)} and a Dyck word on the alphabet {[,]}, which
does not contain any subword [(]) composed of two pairs []
and () matching in the Dyck words (canonicity property).

@ Forbidden pattern ... [...(...]...)...
@ 9 planar Lehman words with 4 letters:

(0) (I (D1 OO0 O 1Ot 0o il

@ 1 noncanonical Dyck word shuffle with 4 letters: [(])

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming

Specification
NN Réle of LP

Outline

9 Logical specification
@ Logic programming
@ Specification
@ Roéle of LP

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Logic programming

@ Programs are sets of rules (Horn clauses) of the form
H :— AMqA... AR,
(meaning, H holds if A; holdsfori=1,...,n)

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Logic programming

@ Programs are sets of rules (Horn clauses) of the form
H :— AfA... ARy
(meaning, H holds if A; holdsfori=1,...,n)
@ Example

ordered ([]) .
ordered ([X]) .

ordered ([X1, X2 |L]) :— Xy < Xo A ordered([Xe|L]).

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Logic programming

@ Programs are sets of rules (Horn clauses) of the form
H :— AfA... ARy
(meaning, H holds if A; holdsfori=1,...,n)
@ Example

ordered ([]) .
ordered ([X]) .

ordered ([X1, X2 |L]) :— Xy < Xo A ordered([Xe|L]).
@ Query evaluation

@ Pick leftmost atom in current query: Q = AAR
@ Find unifying head: Ao = Ho
© Rewrite to get a new query: (A4 A...AAp AR)C

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Logic Programming

Generation

ordered([]) .
ordered ([X]) .
ordered ([X1, X2 |L]) :— Xy < X2 A ordered([Xz|L]).

as a generator:
ordered (L) .

7 N\

L =11
7 N\
L = [X]
7 N\
L = [Xy,X2] with x; < xo
7 N\
L = [Xy,X2,X3] with x; < xo A Xo < X3

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Specification
Labelled Dyck words on {(,)}

A. Giorgetti & V. Senni Planar Lehm ord generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Specification
Labelled Dyck words on {(,)}

@ Labels identify matching pairs in words

(1(2)2(3)3)1(4)a(5(s(7)7(8)8)6)5

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Specification
Labelled Dyck words on {(,)}

@ Labels identify matching pairs in words

(1(2)2(3)3)1(4)a(5(s(7)7(8)8)6)5

@ Letters encode parentheses and brackets
!(! % p !)! % a ![! % b !]! % r

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Specification
Labelled Dyck words on {(,)}

@ Labels identify matching pairs in words

(1(2)2(3)3)1(2)a(5(s(7)7(8)8)e)s5
@ Letters encode parentheses and brackets
CT—p)V —a T—0b T—r
@ GrammarD:=¢|(D)D

dw_pa([],0,-).

dw_pa(W,L,C) :— in(LU,0,L), LV is L-LU-1,
LV >= 0, D is C+1, E is LU+D,
dw_pa(U,LU,D), dw_pa(V,LV,E),
append ([p(C)|U],[a(C) V] ,W).

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Specification
Labelled Dyck words on {(,)}

@ Labels identify matching pairs in words

(1(2)2(3)3)1(4)a(5(s(7)7(8)8)6)s5
@ Letters encode parentheses and brackets
CT—p Y —a T—0b T—r
@ GrammarD:=¢|(D)D
dw_pa([],0,_).
dw_pa(W,L,C) :— in(LU,0,L), LV is L-LU-1,
LV >= 0, D is C+1, E is LU+D,
dw_pa (U, LU D) dw_pa(V,LV,E),
append ([p(C) [U] ,[a(C)[V].W).

Similar predicate dw_br for labelled Dyck words on {[,]}

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Specification
Dyck word shuffles

shuffle([], (1, (1
shuffle ([X|U], [].[X|U]).
shuffle ([1,IX|V],[X|V]).
shuffle ([H|U],[K|V],[HW])
shuffle (U, [K|V],W).

shuffle ([H|U],[K|V],[KW]) :—
shuffle ([H|U],V,W).

dws(W,L) :— in(LU,0,L), LV is L-LU, LV>=0,
dw_pa(U,LU,0), dw_br(V,LV,0), shuffle (U,V,W).

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Specification

Planar Lehman words

plw(W,N) :— dws(W,N), canonical (W).

A. Giorgetti & V. Senni Planar Leh word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Specification

Planar Lehman words

plw(W,N) :— dws(W,N), canonical (W).

@ Forbidden pattern ... [n...(m--Jn--)m---

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Specification

Planar Lehman words

plw(W,N) :— dws(W,N), canonical (W).

@ Forbidden pattern ... [n...(m--Jn--)m---

canonical (W) :— \+ noncanonical (W).

noncanonical (W) = append(C,[a(M)|],),
append(B,[r(N)| - , append(A,[p(M)]_
append (,,[b)| -

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification
| | Réle of LP

Specification

Planar Lehman words

plw(W,N) :— dws(W,N), canonical (W).

@ Forbidden pattern ... [n...(m--Jn--)m---

canonical (W) :— \+ noncanonical (W).

noncanonical (W) = append(C,[a(M)|],),
append(B,[r(N)| - , append(A,[p(M)]_
append (,,[b)| -

@ Executable, thanks to Prolog backtracking mechanism

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification

| LN Role of LP

Specification

Planar Lehman words

plw(W,N) :— dws(W,N), canonical (W).

@ Forbidden pattern ... [n...(m--Jn--)m---

canonical (W) :— \+ noncanonical (W).

noncanonical (W) = append(C,[a(M)|],),
append(B,[r(N)| - , append(A,[p(M)]_
append (,,[b)| -

@ Executable, thanks to Prolog backtracking mechanism
@ Not efficient, due to rejection of non-canonical shuffles

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification
EEN Role of LP

Advantages of Logic Programming

@ Specification is executable

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification
EEN Role of LP

Advantages of Logic Programming

@ Specification is executable

@ Many available techniques, such as program transformations —
optimization by filter promotion (e.g. [Senni and Fioravanti,
TAP’12], constraint-based)

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification
EEN Role of LP

Advantages of Logic Programming

@ Specification is executable

@ Many available techniques, such as program transformations —
optimization by filter promotion (e.g. [Senni and Fioravanti,
TAP’12], constraint-based)

@ Not yet achieved — Independent design of an efficient algorithm,
and its validation wrt the former specification

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification
EEN Role of LP

Advantages of Logic Programming

@ Specification is executable

@ Many available techniques, such as program transformations —
optimization by filter promotion (e.g. [Senni and Fioravanti,
TAP’12], constraint-based)

@ Not yet achieved — Independent design of an efficient algorithm,
and its validation wrt the former specification

@ A general ‘differential testing’ framework:

generator acceptor
specification implementation
implementation specification

implementations | implementation,

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Logical specification Logic programming
Specification
EEN Role of LP

Advantages of Logic Programming

@ Specification is executable

@ Many available techniques, such as program transformations —
optimization by filter promotion (e.g. [Senni and Fioravanti,
TAP’12], constraint-based)

@ Not yet achieved — Independent design of an efficient algorithm,
and its validation wrt the former specification

@ A general ‘differential testing’ framework:

generator acceptor
specification implementation
implementation specification

implementations | implementation,

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation

Performances

Outline

e Automata-based generation
@ Principle

Example

Specification

Validation

Performances

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Automata-based generation

For an efficient generation algorithm

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Automata-based generation

For an efficient generation algorithm

@ Principle
e Generate words letter by letter, from left to right
e Preserve the canonicity property during generation

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Automata-based generation

For an efficient generation algorithm

@ Principle
e Generate words letter by letter, from left to right
e Preserve the canonicity property during generation
@ |dea
e For Dyck words: count pending (unclosed) symbols (or
push them on a stack)

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Automata-based generation

For an efficient generation algorithm

@ Principle
e Generate words letter by letter, from left to right
e Preserve the canonicity property during generation
@ Idea
e For Dyck words: count pending (unclosed) symbols (or

push them on a stack)
e For Dyck word shuffles: two counters? two stacks?

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Automata-based generation

For an efficient generation algorithm

@ Principle
e Generate words letter by letter, from left to right
e Preserve the canonicity property during generation

@ Idea
e For Dyck words: count pending (unclosed) symbols (or
push them on a stack)
e For Dyck word shuffles: two counters? two stacks?
e The canonicity property can be detected with the help of a
single stack of symbols

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([() 1) 11
word prefix
stack

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) C [C) T) 1]
word prefix (
stack (

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) C [() 1) T 1]
word prefix ([
stack ([

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C) 1) 11
word prefix ([[
stack ([[

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([() 1) 1]
wordprefix ([[)
stack [|

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) C [() 1) 11
wordprefix ([[) (
stack [[(

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation
Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C) 1) 11
wordprefix ([[) (I
stack [[([

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([() 1) 11
wordprefix ([[) ([(
stack [[([

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation
Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C)]) 1]
wordprefix ([[) ([()

stack [[([

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation
Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C)]) 1]

wordprefix ([[) ([()]
stack [[(

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

[]] Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) C [() 1) 11

wordprefix ([[) ([() 1)
stack [|

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C) 1) 11
wordprefix ([[) ([() 1) 1
stack |

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C) 1) 11
wordprefix ([[) ([() 1) 11
stack

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C) 1) 11
wordprefix ([[) ([() 1) 11
stack

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C) T) 1]

wordprefix ([[) ([() 1) 11
stack

counters

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([() 1) 1]
word prefix

stack
counters 0

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
[I B | Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) C [C) 1) 1]
word prefix (

stack (
counters 0 O

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C) 1) 11
word prefix ([
stack ([

counters 0 1

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C) 1) 11
word prefix ([[
stack ([|

counters 0 2

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) C [() 1) 11
wordprefix ([[)

stack [|
counters 2

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([C) 1) 11
wordprefix ([[) (
stack [[(

counters 2 0

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([() I) 11
wordprefix ([[) ([
stack [[([

counters 2 1

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) ([() 1) 11
wordprefix ([[) ([(

stack [[([(
counters 2 1 0

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([

word prefix ([
stack [[([

counters 2 1

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword (|

wordprefix ([[) ([()]
stack [[

counters 2 0

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) C [C)])]]

wordprefix ([[) ([() 1)
stack [|

counters 2

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) C [C)])]]

wordprefix ([[) ([() 1) 1
stack |

counters

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Algorithm at work

Example

Forbidden pattern [(|)

finalword ([[) C [C)])]]

wordprefix ([[) ([() 1) 11
stack

counters 0

@ More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’

@ Counting blocks of [’s is sufficient — stack of counters

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Automata-based generation

Logical specification

Characteristic property of a planar Lehman word W
glow (W, Size) :— L is 2xSize, glow(W,[0],L).

glow ([],[0],0).

glow ([p|W],I,L) :(— L > 0, NewlL is L-1,
glow (W,[0] I],NewL).

glow ([b|W] ,[N]I],L) :—= L > 0, NewL is L-1,
NewN is N+1, glOw (W,[NewN| I],Newl).

glow ([r|W],[N|I],L) := L > 0, N> 0, NewL is L-1,
NewN is N—1, glOw (W,[NewN| 1] ,Newl).

glow ([a|W] ,[N1,N2|1],L) :(— L > 0O, NewL is L-1,
NewN is N1+N2, glOw (W, [NewN| 1] ,Newl).

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Automata-based generation

Logical specification

Characteristic property of a planar Lehman word W
glow (W, Size) :— L is 2xSize, glow(W,[0],L).

glow ([],[0],0).

glow ([p|W],I,L) :(— L > 0, NewlL is L-1,
glow (W,[0] I],NewL).

glow ([b|W] ,[N]I],L) :—= L > 0, NewL is L-1,
NewN is N+1, glOw (W,[NewN| I],Newl).

glow ([r|W],[N|I],L) := L > 0, N> 0, NewL is L-1,
NewN is N—1, glOw (W,[NewN| 1] ,Newl).

glow ([a|W] ,[N1,N2|1],L) :(— L > 0O, NewL is L-1,
NewN is N1+N2, glOw (W, [NewN| 1] ,Newl).

Simple, but many failure branches (finally non-empty stacks)

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification

| LN Validation

Performances

Automata-based generation

Optimization

Controlling the stack content with the expected word length
provides efficiency

clow (W, Size) :— L is 2xSize, clow(W,0,0,[0],L).

clow ([],-,-.,[0],0).

clow ([p|W],B,P,1,L) :— L>0, L>=B+P, NelL is L—1,
NP is P+1, clow (W, B,NP,[0]1],NeL).

clow ([b|W] ,B,P,[C|I],L) :— L>0, L>=B+P, NeL is L—1,
NC is C+1, NB is B+1, clow(W,NB, P,[NC|I],NeL).

clow ([r |W],B,P,[C|I],L) :— L>0, L>=B+P, C>0, NeL is L—1,
NC is C—1, NB is B—1, clow(W,NB, P,[NC|I],NeL).

clow ([a|W],B,P,[C1,C2|1],L) :— L>0, L>=B+P, NeL is L—1,
NC is C1+C2, NP is P—1, clow (W, B,NP,[NC|1],NeL).

Translated into a C program c10w.c

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
EEN Validation
Performances

Validation

Input: word size (number of symbol pairs)
@ plw : specification
@ glow : stack-based (Prolog/C) implementation

@ clow : optimized, stack-based (Prolog/C) implementation

A. Giorgetti & V. Senni Planar Leh word generation algorithms

Principle
Example
Automata-based generation Specification
EEN Validation

Performances

Validation

Input: word size (number of symbol pairs)

@ plw : specification

@ glow : stack-based (Prolog/C) implementation

@ clow : optimized, stack-based (Prolog/C) implementation

@ Validation
generator | acceptor

plw glOow
glow plw
plw clOow
clOow plw

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
EEN Validation
Performances

Validation

Input: word size (number of symbol pairs)

@ plw : specification

@ glow : stack-based (Prolog/C) implementation

@ clow : optimized, stack-based (Prolog/C) implementation

@ Validation
generator | acceptor

plw glOow
glow plw
plw clOow
clOow plw

Equivalence checked, incrementally, up to input size 7 (Prolog/C)

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle
Example
Automata-based generation Specification
EEN Validation
Performances

Validation

Input: word size (number of symbol pairs)

@ plw : specification

@ glow : stack-based (Prolog/C) implementation

@ clow : optimized, stack-based (Prolog/C) implementation

@ Validation
generator | acceptor

plw glOow
glow plw
plw clOow
clOow plw

Equivalence checked, incrementally, up to input size 7 (Prolog/C)
Automated: performed by LP-queries, using built-in evaluation mechanisms

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Principle

Example
Automata-based generation Specification
| LN Validation
Performances
Performances
Prolog C
spec. optim. speedup | rpm.c | clOw.c
[n] b(n) time (s) | time (s) factor time (s) | time (s)
0-4 - 0.00 0.00 NS 0 0
5 2,916 0.03 0.01 3.0 0 0
6 24,057 0.41 0.08 5.1 0 0
7 208,494 5.13 0.65 7.9 0 0
8 1,876,446 68.95 5.99 11.5 0 0
9 17,399,772 923.94 55.20 16.7 9 1
10 165,297,834 | 14,255.00 575.00 24.8 95 12
11 1,602,117,468 too long | 5,227.00 - 1005 125

Specification: Obvious correctness, no efficiency
Optimized (automata-based): Efficient, no correctness proof

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
[| [| Counting Formal proof

Outline

0 Counting
@ Matching pair removal

@ Validation
@ Formal proof

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
[| [| Counting Formal proof

Counting

From the automata-based algorithm

Let ny,n.,,, be the number of PLWs appending some word of length
I to some word whose subword of pending symbols is [™ (... [™.
The generating function

N(x,t) = Z Z Ny UTE U X
1,r>0 n,...,nr41>0
is the unique formal power series solution of the equation
N(X7 t) = 1+ X(t71 (N(X7 t) - N(Xa 0))\U1::0,Vi22.uf::u,',1
+uy" (N(x, t) = N(X, t)ju,—0) + U1 N(x, 1)
+t (U — 1) (U NOX) iz 1=y
—U N(Xv t)WiEZAU,'::U,‘M))

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
[| [| Counting Formal proof

Another decomposition of planar Lehman words

By matching pair removal

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
[| [| Counting Formal proof

Another decomposition of planar Lehman words

By matching pair removal

Let P, be the set of words on {(,), [,]} composed of ¢, the
words [u] v whenever u and v are in P», and the words (u) v
whenever u o v is in P, and the restriction of uto {(,)} is a

Dyck word.

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
[| [| Counting Formal proof

Another decomposition of planar Lehman words

By matching pair removal

Let P, be the set of words on {(,), [,]} composed of ¢, the
words [u] v whenever u and v are in P», and the words (u) v
whenever u o v is in P, and the restriction of uto {(,)} is a
Dyck word.

Theorem 1 [Cori75, Property 11.7]

P> and the set Py of planar Lehman words are in
length-preserving one-to-one correspondence.

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
u | Counting Formal proof

Another decomposition of planar Lehman words

By matching pair removal

Let P, be the set of words on {(,), [,]} composed of ¢, the
words [u] v whenever u and v are in P», and the words (u) v
whenever u o v is in P, and the restriction of uto {(,)} is a
Dyck word.

Theorem 1 [Cori75, Property 11.7]

P> and the set Py of planar Lehman words are in
length-preserving one-to-one correspondence.

Definition

The cut number ¢(w) of a word w € {(,),[,]}* is the number of
its prefixes whose restriction to parentheses is a Dyck word. By
convention, c(e) = 1.

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
u | Counting Formal proof

Counting

New functional equations

Let kh(n) (resp. lh(n, k)) be the number of planar Lehman words of
size n (resp. with cut number k).

Proposition

Lo(X) = Ypso (X" and M(x, y) = 301 Y05 lo(n, k)x"~Tyk—1
satisfy
Lo(x) = 1+xM(x,1)
Mx,y) = y+y2+xy(1—y) " (M(x,1) = y*M(x,y))
+ xy2M(x, y) + X2y?M(x, y 2

— lo(n) = 2202 [Tutte63]

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation

[| [| Counting Formal proof
Validation
Prolog
spec. optim. pair removal
[n] lo(n) time (s) | time (s) time (s)
0-4 - 0.00 0.00 0.00
5 2,916 0.03 0.01 0.00
6 24,057 0.41 0.08 0.06
7 208,494 5.13 0.65 0.65
8 1,876,446 68.95 5.99 7.23
9 17,399,772 923.94 55.20 81.47
10 165,297,834 | 14,255.00 575.00 910.22
11 | 1,602,117,468 too long | 5,227.00 10,129.66

Proper decomposition = declarativeness and better efficiency
How to discover good decompositions?

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
| | Counting Formal proof

Formal proof

Principle

Theorem 1 (reminder)

P> and the set Py of planar Lehman words are in
length-preserving one-to-one correspondence.

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
| | Counting Formal proof

Formal proof

Principle

Theorem 1 (reminder)

P> and the set Py of planar Lehman words are in
length-preserving one-to-one correspondence.

@ A paper-and-pen proof fits in two pages
[Cori75, pages 134-135]

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
| | Counting Formal proof

Formal proof

Principle

Theorem 1 (reminder)

P> and the set Py of planar Lehman words are in
length-preserving one-to-one correspondence.

@ A paper-and-pen proof fits in two pages
[Cori75, pages 134-135]
@ How hard is it to prove this theorem formally?

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
| | Counting Formal proof

Formal proof

Principle

Theorem 1 (reminder)

P> and the set Py of planar Lehman words are in
length-preserving one-to-one correspondence.

@ A paper-and-pen proof fits in two pages
[Cori75, pages 134-135]
@ How hard is it to prove this theorem formally?

@ First experiment with Coq (proof assistant, calculus of
inductive constructions, based on the theory of dependent

types)

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Matching pair removal
Validation
| | Counting Formal proof

Some Coq code

Definition of P2

P> is the set of words on {(,), [,]} composed of , the words [u] v whenever u and v
are in P, and the words (u) v whenever u o v is in P, and the restriction of uto {(,)}
is a Dyck word.

A. Giorgetti & V. Senni Planar Lehm ord generation algorithms

Matching pair removal
Validation
| | Counting Formal proof

Some Coq code

Definition of P2

P> is the set of words on {(,), [,]} composed of , the words [u] v whenever u and v
are in P, and the words (u) v whenever u o v is in P, and the restriction of uto {(,)}
is a Dyck word.

Inductive plw2 : nat —-> nat -> nat -> nat -> word -> Prop :=
| plw2mty

forall nm : nat, plw2 (S n) n (S m) mnil
| plw2bracket

forall (fp lp fb 1lb 1lpu lbu : nat) (u v : word),
plw2 fp lpu (S fb) lbu u —>
plw2 (S 1lpu) 1lp (S lbu) 1lb v —>
plw2 fp 1lp fb 1b (B fb :: u ++ R fb :: v)
| plw2paren
forall (fp lp fb 1lb 1lpu lbu : nat) (u v : word),
dwpa (S fp) lpu (rmBR u) ->
plw2 (S fp) 1lp fb 1b (u ++ v) -—>
plw2 fp 1lp fb 1b (P fp :: u ++ A fp :: v).

A. Giorgetti & V. Senni Planar Lehm ord generation algorithms

Matching pair removal
Validation
| | Counting Formal proof

Some Coq code

Definition of P2

P> is the set of words on {(,), [,]} composed of , the words [u] v whenever u and v
are in P, and the words (u) v whenever u o v is in P, and the restriction of uto {(,)}
is a Dyck word.

Inductive plw2 : nat —-> nat -> nat -> nat -> word -> Prop :=
| plw2mty

forall nm : nat, plw2 (S n) n (S m) mnil
| plw2bracket

forall (fp lp fb 1lb 1lpu lbu : nat) (u v : word),
plw2 fp lpu (S fb) lbu u —>
plw2 (S 1lpu) 1lp (S lbu) 1lb v —>
plw2 fp 1lp fb 1b (B fb :: u ++ R fb :: v)
| plw2paren
forall (fp lp fb 1lb 1lpu lbu : nat) (u v : word),
dwpa (S fp) lpu (rmBR u) ->
plw2 (S fp) 1lp fb 1b (u ++ v) -—>
plw2 fp 1lp fb 1b (P fp :: u ++ A fp :: v).

With labels

A. Giorgetti & V. Senni Planar Lehm ord generation algorithms

Matching pair removal
Validation
| | Counting Formal proof

Some Coq code

Definition of P4

Inductive plwl : nat —-> nat -> nat -> nat -> word -> Prop :=
| plwlax

forall fp lp fb 1lb : nat, forall w : word,

dws fp lp fb 1lb w -> canonical w —-> plwl fp lp fb 1lb w.

Main lemma (one-half of Theorem 1)

Lemma imp2l1 (fp lp fb 1b : nat) (w : word)
plw2 fp 1lp fb 1b w -> plwl fp 1lp fb 1lb w.

A. Giorgetti & V. Senni Planar Lehm ord generation algorithms

Matching pair removal
Validation
| | Counting Formal proof

Proving experience

@ Metrics
Nb. of lines Nb. of | Nb. of lines
Subject for defs. lemmas of proof
words (lists) 7 6 56
Dyck words 6 (x 2) 14 216
Shuffles | 12 (+16+2) 32 213
Pi 8 3 384
P2 13 - -
P2 C P - 1 29
| Totals | 57 | 56 | 898 |

@ Two families of Dyck words — Many lemmas repeated twice

@ Suggests a more practical characterization of Dyck word shuffles: The
restriction to each alphabet is a Dyck word

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Conclusion

Outline

Q Conclusion

A. Giorgetti & V. Senni Planar Lehm ord generation algorithms

Conclusion

Conclusion

Summary

@ Two characterizations of planar Lehman words

e Validated by bounded-exhaustive testing
(up to size 7, > 200,000 cases)

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

http://www.disp.uniroma2.it/users/senni/validation.html
http://www.disp.uniroma2.it/users/senni/validation.html

Conclusion

Conclusion

Summary

@ Two characterizations of planar Lehman words

e Validated by bounded-exhaustive testing
(up to size 7, > 200,000 cases)
e “A proper decomposition implies the definition” is formally
proved (the reverse implication is ongoing work)

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

http://www.disp.uniroma2.it/users/senni/validation.html
http://www.disp.uniroma2.it/users/senni/validation.html

Conclusion

Conclusion

Summary

@ Two characterizations of planar Lehman words
e Validated by bounded-exhaustive testing
(up to size 7, > 200,000 cases)
e “A proper decomposition implies the definition” is formally
proved (the reverse implication is ongoing work)

@ Efficient planar Lehman word generation algorithms

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

http://www.disp.uniroma2.it/users/senni/validation.html
http://www.disp.uniroma2.it/users/senni/validation.html

Conclusion

Conclusion

Summary

@ Two characterizations of planar Lehman words

e Validated by bounded-exhaustive testing
(up to size 7, > 200,000 cases)
e “A proper decomposition implies the definition” is formally
proved (the reverse implication is ongoing work)

@ Efficient planar Lehman word generation algorithms
@ Differential testing library for logical specifications

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

http://www.disp.uniroma2.it/users/senni/validation.html
http://www.disp.uniroma2.it/users/senni/validation.html

Conclusion

Conclusion

Summary

@ Two characterizations of planar Lehman words

e Validated by bounded-exhaustive testing
(up to size 7, > 200,000 cases)
e “A proper decomposition implies the definition” is formally
proved (the reverse implication is ongoing work)

@ Efficient planar Lehman word generation algorithms
@ Differential testing library for logical specifications

http://www.disp.uniroma2.it/users/senni/
validation.html

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

http://www.disp.uniroma2.it/users/senni/validation.html
http://www.disp.uniroma2.it/users/senni/validation.html

Conclusion

Conclusion

Summary

@ Two characterizations of planar Lehman words

e Validated by bounded-exhaustive testing
(up to size 7, > 200,000 cases)
e “A proper decomposition implies the definition” is formally
proved (the reverse implication is ongoing work)

@ Efficient planar Lehman word generation algorithms
@ Differential testing library for logical specifications

http://www.disp.uniroma2.it/users/senni/
validation.html

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

http://www.disp.uniroma2.it/users/senni/validation.html
http://www.disp.uniroma2.it/users/senni/validation.html

Conclusion

Conclusion

Perspectives

@ A formal methodology for combinatorial object/data
structures generation and counting

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Conclusion

Conclusion

Perspectives

@ A formal methodology for combinatorial object/data
structures generation and counting

“Think and specify, test and prove”

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Conclusion

Conclusion

Perspectives

@ A formal methodology for combinatorial object/data
structures generation and counting

“Think and specify, test and prove”

@ Optimization (filter promotion) by general-purpose formal
transformations

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

Conclusion

Conclusion

Perspectives

@ A formal methodology for combinatorial object/data
structures generation and counting

“Think and specify, test and prove”
@ Optimization (filter promotion) by general-purpose formal
transformations

@ Application to the formal specification of rooted maps and
hypermaps of any positive genus (generation is validated,
counting is ongoing work)

A. Giorgetti & V. Senni Planar Lehman word generation algorithms

	Introduction
	Motivations
	Planar Lehman words

	Logical specification
	Logic programming
	Specification
	Rôle of LP

	Automata-based generation
	Principle
	Example
	Specification
	Validation
	Performances

	Counting
	Matching pair removal
	Validation
	Formal proof

	Conclusion

