

Specification and Validation of Algorithms Generating Planar Lehman Words

Alain Giorgetti Valerio Senni

University of Franche-Comté FEMTO-ST Inria, CASSIS project University of Rome "Tor Vergata" Dept. of Computer Science, Systems and Production

GASCom 2012

1/31

Introduction Logical specification

Conclusion

Motivations Planar Lehman words

D. Zeilberger: "Teach your computer how to do research!"

ヘロト ヘ戸ト ヘヨト ヘヨト

ъ

Motivations Planar Lehman words

D. Zeilberger: "Teach your computer how to do research!"

• Computer-assisted design and validation of efficient enumeration algorithms

Motivations Planar Lehman words

D. Zeilberger: "Teach your computer how to do research!"

- Computer-assisted design and validation of efficient enumeration algorithms
 - From a high-level (formal) specification

Motivations Planar Lehman words

D. Zeilberger: "Teach your computer how to do research!"

- Computer-assisted design and validation of efficient enumeration algorithms
 - From a high-level (formal) specification
 - Whenever possible, optimization by transformations

Motivations Planar Lehman words

D. Zeilberger: "Teach your computer how to do research!"

- Computer-assisted design and validation of efficient enumeration algorithms
 - From a high-level (formal) specification
 - Whenever possible, optimization by transformations
 - Otherwise, validation of efficient algorithms wrt their specification
 - Intensive testing

Motivations Planar Lehman words

D. Zeilberger: "Teach your computer how to do research!"

- Computer-assisted design and validation of efficient enumeration algorithms
 - From a high-level (formal) specification
 - Whenever possible, optimization by transformations
 - Otherwise, validation of efficient algorithms wrt their specification
 - Intensive testing for early error detection
 - Computer proof of equivalence (formal reasoning)

< □ > < 同 > < 回 > < 回

Motivations Planar Lehman words

D. Zeilberger: "Teach your computer how to do research!"

- Computer-assisted design and validation of efficient enumeration algorithms
 - From a high-level (formal) specification
 - Whenever possible, optimization by transformations
 - Otherwise, validation of efficient algorithms wrt their specification
 - Intensive testing for early error detection
 - Computer proof of equivalence (formal reasoning)
- Application to Combinatorics

Introduction Logical specification

Counting

Automata-based generation

Planar Lehman words

Combinatorial case study

Planar Lehman-Lenormand words

- Code for rooted planar maps
- Proposed by A. Lehman
- Independently proposed by C. Lenormand [Cori75]
- Studied by T. R. S. Walsh
- Shuffles of two Dyck words with forbidden subwords

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivations Planar Lehman words

 A Dyck word of length 2n (size n) contains n pairs of parentheses (possibly nested) which correctly match

Motivations Planar Lehman words

- A Dyck word of length 2n (size n) contains n pairs of parentheses (possibly nested) which correctly match
- Example: (()) ((() ()))

Motivations Planar Lehman words

- A Dyck word of length 2n (size n) contains n pairs of parentheses (possibly nested) which correctly match
- Example: (()) ((() ()))
- Grammar: $D ::= \varepsilon \mid (D) D$

ヘロト ヘ戸ト ヘヨト ヘヨト

SCIENCES & TECHNOLOGIES Planar Lehman words Definition

Introduction Logical specification Automata-based generation Counting

Motivations Planar Lehman words

Planar Lehman word

A <u>planar Lehman word</u> (PLW) is any shuffle of a Dyck word on the alphabet $\{(,)\}$ and a Dyck word on the alphabet $\{[,]\}$, which does not contain any subword [(]) composed of two pairs [] and () matching in the Dyck words (canonicity property).

- Forbidden pattern ... [... (...] ...) ...
- 9 planar Lehman words with 4 letters:
 (()) ([]) (()() ()[] [()] [()] []]
- 1 noncanonical Dyck word shuffle with 4 letters: [(])

SCIENCES & TECHNOLOGIES Outline

Introduction Logical specification Automata-based generation Counting Conclusion

ogic programming specification Rôle of LP

→ Ξ → < Ξ →</p>

< 🗇 🕨

ъ

- 2 Logical specification
 - Logic programming
 - Specification
 - Rôle of LP
 - 3 Automata-based generation
- 4 Counting

sciences & technologies

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

Programs are sets of rules (Horn clauses) of the form H :- A₁ ∧ ... ∧ A_n (meaning, H holds if A_i holds for i = 1,..., n)

sciences & technologies

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

Programs are sets of rules (Horn clauses) of the form H :- A₁ ∧ . . . ∧ A_n (meaning, H holds if A_i holds for i = 1,...,n)

Example

```
ordered([]).
ordered([X]).
ordered([X<sub>1</sub>, X<sub>2</sub>|L]) :- X_1 \le X_2 \land ordered([X<sub>2</sub>|L]).
```

イロト 不得 とくほ とくほとう

sciences & technologies

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

Programs are sets of rules (Horn clauses) of the form
 H :- A₁ ∧ ... ∧ A_n
 (meaning, H holds if A_i holds for i = 1,...,n)

Example

```
ordered([]).
ordered([X]).
ordered([X_1, X_2 | L]) :- X_1 \le X_2 \land ordered([X_2 | L]).
```

- Query evaluation
 - **1** Pick leftmost atom in current query: $Q = A \wedge R$
 - 2 Find unifying head: $A \sigma = H \sigma$
 - **3** Rewrite to get a new query: $(A_1 \land \ldots \land A_n \land R) \sigma$

イロト 不得 とくほ とくほとう

sciences & TECHNOLOGIES Logic Programming Generation

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

イロト イポト イヨト イヨト

ordered([]). ordered([X]). ordered([X_1, X_2 | L]) :- $X_1 \le X_2 \land \text{ordered}([X_2 | L])$.

as a generator:

ordered(L).

L = [X]

 $L = [x_1, x_2]$

 $L = [X_1, X_2, X_3]$

L = []

..

with $x_1 < x_2 \land x_2 < x_3$

with $x_1 < x_2$

sciences & TECHNOLOGIES Specification Labelled Dyck words on {(,)}

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

イロト イポト イヨト イヨト

э.

sciences & TECHNOLOGIES Specification Labelled Dyck words on {(,)}

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

★ E → ★ E →

< 🗇 🕨

Labels identify matching pairs in words

 (1(2)2(3)3)1(4)4(5(6(7)7(8)8)6)5

sciences & TECHNOLOGIES Specification Labelled Dyck words on {(,)}

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

Labels identify matching pairs in words (1(2)2(3)3)1(4)4(5(6(7)7(8)8)6)5
Letters encode parentheses and brackets '('→p ')'→a '['→b ']'→r

くロト (過) (目) (日)

Specification Labelled Dyck words on {(,)}

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

 Labels identify matching pairs in words (1(2)2(3)3)1(4)4(5(6(7)7(8)8)6)5Letters encode parentheses and brackets $(' \rightarrow p)' \rightarrow a '' \rightarrow b '' \rightarrow r$ • Grammar $D ::= \varepsilon \mid (D) D$ dw_pa([],0,_). $dw_pa(W,L,C) := in(LU,0,L), LV$ is L-LU-1, $LV \ge 0$. D is C+1. E is LU+D. $dw_pa(U,LU,D)$, $dw_pa(V,LV,E)$, append ([p(C)|U], [a(C)|V], W).

ヘロト ヘアト ヘビト ヘビト

Specification Labelled Dyck words on {(,)}

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

ヘロン 人間 とくほ とくほ とう

E DQC

 Labels identify matching pairs in words (1(2)2(3)3)1(4)4(5(6(7)7(8)8)6)5Letters encode parentheses and brackets $(' \rightarrow p)' \rightarrow a '' \rightarrow b '' \rightarrow r$ • Grammar $D ::= \varepsilon \mid (D) D$ dw_pa([],0,_). $dw_pa(W,L,C) := in(LU,0,L), LV$ is L-LU-1, $LV \ge 0$. D is C+1. E is LU+D. $dw_pa(U,LU,D)$, $dw_pa(V,LV,E)$, append ([p(C)|U], [a(C)|V], W).

Similar predicate dw_br for labelled Dyck words on $\{[,]\}$

Specification Dyck word shuffles Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

shuffle([], [], []).
shuffle([X|U], [],[X|U]).
shuffle([],[X|V],[X|V]).
shuffle([H|U],[K|V],[H|W]) : shuffle(U,[K|V],W).
shuffle([H|U],[K|V],[K|W]) : shuffle([H|U],V,W).

ヘロト ヘアト ヘビト ヘビト

sciences & TECHNOLOGIES Specification Planar Lehman words

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

= 900

plw(W,N) := dws(W,N), canonical(W).

イロン 不得 とくほ とくほとう

Logic programming Specification Rôle of LP

plw(W,N) := dws(W,N), canonical(W).

• Forbidden pattern $\dots [n \dots (m \dots]n \dots)m \dots$

イロン イボン イヨン イヨン

Specification Planar Lehman words

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

plw(W,N) :- dws(W,N), canonical(W).

• Forbidden pattern $\dots [n \dots (m \dots]n \dots)_m \dots$

canonical(W) :- \setminus + noncanonical(W).

イロト 不得 とくほ とくほ とう

Specification Planar Lehman words

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

plw(W,N) :- dws(W,N), canonical(W).

• Forbidden pattern $\ldots [n \cdots (m \cdots]n \cdots)m \cdots$

canonical(W) :- + noncanonical(W).

 $\begin{array}{ll} \mbox{noncanonical (W)} &:= \mbox{ append } (C, [\mbox{ } a(M) | \ _] \ , W) \ , \\ \mbox{ append } (B, [\ r \ (N) | \ _] \ , C) \ , \ \ \mbox{ append } (A, [\ p \ (M) | \ _] \ , B) \ , \\ \mbox{ append } (\ _ \ , [\ b \ (N) | \ _] \ , A) \ . \end{array}$

Executable, thanks to Prolog backtracking mechanism

イロト イポト イヨト イヨト

Specification Planar Lehman words

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

plw(W,N) :- dws(W,N), canonical(W).

• Forbidden pattern $\ldots [n \cdots (m \cdots]n \cdots)m \cdots$

canonical(W) :- + noncanonical(W).

 $\begin{array}{ll} \mbox{noncanonical (W)} &:= \mbox{ append } (C, [\mbox{ a (M)} | _], W) \ , \\ \mbox{ append } (B, [\mbox{ r (N)} | _], C) \ , \ \ \mbox{ append } (A, [\mbox{ p (M)} | _], B) \ , \\ \mbox{ append } (_, [\mbox{ b (N)} | _], A) \ . \end{array}$

- Executable, thanks to Prolog backtracking mechanism
- Not efficient, due to rejection of non-canonical shuffles

イロト 不得 とくほ とくほとう

Logic programming Specification Rôle of LP

Advantages of Logic Programming

• Specification is executable

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

Advantages of Logic Programming

- Specification is executable
- Many available techniques, such as program transformations → optimization by filter promotion (e.g. [Senni and Fioravanti, TAP'12], constraint-based)

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

Advantages of Logic Programming

- Specification is executable
- Many available techniques, such as program transformations → optimization by filter promotion (e.g. [Senni and Fioravanti, TAP'12], constraint-based)
- Not yet achieved → Independent design of an efficient algorithm, and its validation wrt the former specification

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

Advantages of Logic Programming

- Specification is executable
- Many available techniques, such as program transformations → optimization by filter promotion (e.g. [Senni and Fioravanti, TAP'12], constraint-based)
- Not yet achieved → Independent design of an efficient algorithm, and its validation wrt the former specification
- A general 'differential testing' framework:

generatoracceptorspecificationimplementationimplementation1implementation2

ヘロト ヘアト ヘビト ヘ

Introduction Logical specification Automata-based generation Counting Conclusion

Logic programming Specification Rôle of LP

Advantages of Logic Programming

- Specification is executable
- Many available techniques, such as program transformations → optimization by filter promotion (e.g. [Senni and Fioravanti, TAP'12], constraint-based)
- Not yet achieved → Independent design of an efficient algorithm, and its validation wrt the former specification
- A general 'differential testing' framework:

generatoracceptorspecificationimplementationimplementation1implementation2

ヘロト ヘアト ヘビト ヘ

Content and the sciences & technologies

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

- < ≣ → <

Introduction

- Logical specification
- 3 Automata-based generation
 - Principle
 - Example
 - Specification
 - Validation
 - Performances

< 🗇 🕨

Principle Example Specification Validation Performances

Automata-based generation

For an efficient generation algorithm
Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Automata-based generation

For an efficient generation algorithm

- Principle
 - Generate words letter by letter, from left to right
 - Preserve the canonicity property during generation

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Automata-based generation

For an efficient generation algorithm

- Principle
 - Generate words letter by letter, from left to right
 - Preserve the canonicity property during generation
- Idea
 - For Dyck words: count pending (unclosed) symbols (or push them on a stack)

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Automata-based generation

For an efficient generation algorithm

- Principle
 - Generate words letter by letter, from left to right
 - Preserve the canonicity property during generation
- Idea
 - For Dyck words: count pending (unclosed) symbols (or push them on a stack)
 - For Dyck word shuffles: two counters? two stacks?

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction Logical specification Automata-based generation Counting Principle Example Specification Validation Performances

Automata-based generation

For an efficient generation algorithm

- Principle
 - · Generate words letter by letter, from left to right
 - Preserve the canonicity property during generation
- Idea
 - For Dyck words: count pending (unclosed) symbols (or push them on a stack)
 - For Dyck word shuffles: two counters? two stacks?
 - The canonicity property can be detected with the help of a single stack of symbols

(日)

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix stack

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix (stack (

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix ([stack ([

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix ([[stack ([[

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix ([[) stack [[

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(]) final word ([[) ([()])]] word prefix ([[) (stack [[(

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(]) final word ([[) ([()])]] word prefix ([[) ([stack [[([

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(]) final word ([[) ([()])]] word prefix ([[) ([(stack [[([(

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix ([[) ([() stack [[([

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix ([[) ([()] stack [[(

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix ([[) ([()]) stack [[

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix ([[) ([()])] stack [

イロト イポト イヨト イヨト

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix ([[) ([()])]] stack

イロト イポト イヨト イヨト

sciences &	Introduction Logical specification Automata-based generation Counting Conclusion	Principle Example Specification Validation Performances
Algorithm at work		

Forbidden pattern ())

final word ([[) ([()])]] word prefix ([[) ([()])]] stack

- More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
- $\bullet\,$ Counting blocks of '['s is sufficient \to stack of counters

A E > A E >

Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix ([[) ([()])]] stack counters

- More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
- Counting blocks of '['s is sufficient \rightarrow stack of counters

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

SCIENCES & TECHNOLOGIES Algorithm at work Example Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Forbidden pattern [(])

final word ([[) ([()])]] word prefix stack counters 0

- More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
- Counting blocks of '['s is sufficient \rightarrow stack of counters

イロト イポト イヨト イヨト

SCIENCES & Conclusion Automata-based generation Counting Conclusion Algorithm at work Example

Principle Example Specification Validation Performances

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix (stack (counters 0 0
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

イロト イポト イヨト イヨト

sciences &	Introduction Logical specification Automata-based generation Counting Conclusion	Principle Example Specifica Validatio Performa
Algorithm at work		

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix ([stack ([counters 0 1
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

(* (E)) * (E))

< 🗇 🕨

sciences &	Introduction Logical specification Automata-based generation Counting Conclusion	Principle Exampl Specific Validatio
Algorithm at work		

프 🖌 🛪 프 🛌

Forbidden pattern ()

- final word ([[) ([()])]] word prefix ([stack ([counters 0 2
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

 Introduction
 Principle

 Logical specification
 Specification

 Automata-based generation
 Counting

 TECHNOLOGIES
 Conclusion

 Algorithm at work
 Example

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix ([[) stack [[counters 2
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

イロト イポト イヨト イヨト

sciences &	Introduction Logical specification Automata-based generation Counting Conclusion	Princi Exam Speci Valida Perfor
Algorithm at work		

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix ([[) (stack [[(counters 2 0
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

ple

A E > A E >

Algorithm at work Example

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix ([[) ([stack [[([counters 2 1
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

ヘロト ヘ戸ト ヘヨト ヘヨト

sciences & TECHNOLOGIES	Introduction Logical specification Automata-based generation Counting Conclusion	Principle Example Specification Validation Performances
Algorithm at work		

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix ([[) ([(stack [[([(counters 2 1 0
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

프 🖌 🛪 프 🛌

Principle Example Specification Validation Performances

ヘロト ヘ戸ト ヘヨト ヘヨト

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix ([[) ([() stack [[([counters 2 1
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

Principle Example Specification Validation Performances

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix ([[) ([()] stack [[(counters 2 0
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

sciences &	Introduction Logical specification Automata-based generation Counting Conclusion	Principl Examp Specific Validati Perform
Algorithm at work		

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix ([[) ([()]) stack [[counters 2
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

프 🖌 🛪 프 🛌

SCIENCES & Conclusion Conclusion Automata-based generation TECHNOLOGIES Conclusion Conclusion Conclusion Prince Conting Conclusion Conclusion Prince Example

Principle Example Specification Validation Performances

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix ([[) ([()])] stack [counters 1
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

イロト イポト イヨト イヨト

Principle Example Specification Validation Performances

Forbidden pattern [(])

- final word ([[) ([()])]] word prefix ([[) ([()])]] stack counters 0
 - More than a stack: parentheses under brackets are sometimes pulled from the 'stack'
 - Counting blocks of '['s is sufficient \rightarrow stack of counters

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

SCIENCES & TECHNOLOGIES

Introduction Logical specification Automata-based generation Counting Principle Example Specification Validation Performances

イロト イポト イヨト イヨト

= 990

Automata-based generation

Logical specification

```
Characteristic property of a planar Lehman word W
glow(W, Size) :- L is 2*Size, glow(W, [0], L).
alow([],[0],0).
gl0w([p|W], I, L) := L > 0, NewL is L-1.
  gl0w(W,[0|1],NewL).
glow([b|W],[N|I],L) := L > 0, NewL is L-1,
  NewN is N+1, gl0w (W, [NewN|1], NewL).
glow([r|W],[N|I],L) := L > 0, N > 0, NewL is L-1,
  NewN is N-1, glow (W, [NewN | I], NewL).
g[0w([a|W],[N1,N2|I],L) := L > 0, NewL is L-1,
  NewN is N1+N2, gl0w(W,[NewN|1],NewL).
```

SCIENCES & TECHNOLOGIES

Introduction Logical specification Automata-based generation Counting Principle Example Specification Validation Performances

Automata-based generation

Logical specification

```
Characteristic property of a planar Lehman word W
glow(W, Size) := L is 2 \otimes Size, glow(W, [0], L).
alow([],[0],0).
gl0w([p|W], I, L) := L > 0, NewL is L-1,
  gl0w(W,[0|1],NewL).
glow([b|W],[N|I],L) := L > 0, NewL is L-1,
  NewN is N+1, gl0w (W, [NewN|1], NewL).
glow([r|W],[N|I],L) := L > 0, N > 0, NewL is L-1,
  NewN is N-1, glow (W, [NewN | I], NewL).
g[0w([a|W],[N1,N2|I],L) := L > 0, NewL is L-1,
  NewN is N1+N2, gl0w(W,[NewN|1],NewL).
```

Simple, but many failure branches (finally non-empty stacks)

sciences & Technologies

Introduction Logical specification Automata-based generation Counting Principle Example Specification Validation Performances

Automata-based generation

Optimization

Controlling the stack content with the expected word length provides efficiency

```
clow(W, Size) :- L is 2*Size, clow(W, 0, 0, [0], L).
```

```
\begin{array}{l} \text{clow}\left([]\;,\_,\_,\_,[0]\;,0\right).\\ \text{clow}\left([p\,|W]\;,B,P,I\,,L\right)\;:=\;L>0,\;L>=B+P,\;\text{NeL is }L-1,\\ \text{NP is }P+1\;,\;\text{clow}\left(W\;,\;B,\text{NP},[0\,|\,I]\;,\text{NeL}\right).\\ \text{clow}\left([b\,|W]\;,B,P,[C\,|\,I]\;,L\right)\;:=\;L>0,\;L>=B+P\;,\;\text{NeL is }L-1,\\ \text{NC is }C+1\;,\;\text{NB is }B+1\;,\;\text{clow}\left(W;\text{NB}\;,P,[\text{NC}|\,I]\;,\text{NeL}\right).\\ \text{clow}\left([r\,|W]\;,B,P,[C\,|\,I]\;,L\right)\;:=\;L>0\;,\;L>=B+P\;,\;\text{C>0}\;,\;\text{NeL is }L-1,\\ \text{NC is }C-1\;,\;\text{NB is }B-1\;,\;\text{clow}\left(W;\text{NB}\;,P,[\text{NC}|\,I]\;,\text{NeL}\right).\\ \text{clow}\left([a\,|W]\;,B,P,[C1\;,C2\,|\,I]\;,L\right)\;:=\;L>0\;,\;L>=B+P\;,\;\text{NeL is }L-1,\\ \text{NC is }C1+C2\;,\;\text{NP is }P-1\;,\;\text{clow}\left(W\;,B\;,\text{NP},[\text{NC}|\,I]\;,\text{NeL}\right).\\ \end{array}
```

Translated into a C program clow.c

くロト (過) (目) (日)

SCIENCES & TECHNOLOGIES Validation

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Input: word size (number of symbol pairs)

- plw : specification
- glow : stack-based (Prolog/C) implementation
- clow : optimized, stack-based (Prolog/C) implementation

イロト イポト イヨト イヨト

E DQC
SCIENCES & TECHNOLOGIES Validation

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Input: word size (number of symbol pairs)

- plw : specification
- glow : stack-based (Prolog/C) implementation
- clow : optimized, stack-based (Prolog/C) implementation

Validation

generator	acceptor	
plw	g10w	
gl0w	plw	
plw	cl0w	
cl0w	plw	

イロト イポト イヨト イヨト

= 900

SCIENCES & TECHNOLOGIES Validation

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Input: word size (number of symbol pairs)

- plw : specification
- glow : stack-based (Prolog/C) implementation
- clow : optimized, stack-based (Prolog/C) implementation

Validation

generator	acceptor	
plw	gl0w	
gl0w	plw	
plw	cl0w	
cl0w	plw	

Equivalence checked, incrementally, up to input size 7 (Prolog/C)

イロト イポト イヨト イヨト

э.

SCIENCES & TECHNOLOGIES Validation

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

Input: word size (number of symbol pairs)

- plw : specification
- glow : stack-based (Prolog/C) implementation
- clow : optimized, stack-based (Prolog/C) implementation

Validation

generator	acceptor
plw	gl0w
gl0w	plw
plw	cl0w
cl0w	plw

Equivalence checked, incrementally, up to input size 7 (Prolog/C) Automated: performed by LP-queries, using built-in evaluation mechanisms

Performances

Introduction Logical specification Automata-based generation Counting Conclusion Principle Example Specification Validation Performances

		Prolog		С		
		spec. optim. speedup		rpm.c	cl0w.c	
n	$I_0(n)$	time (s)	time (s)	factor	time (s)	time (s)
0-4	-	0.00	0.00	NS	0	0
5	2,916	0.03	0.01	3.0	0	0
6	24,057	0.41	0.08	5.1	0	0
7	208,494	5.13	0.65	7.9	0	0
8	1,876,446	68.95	5.99	11.5	0	0
9	17,399,772	923.94	55.20	16.7	9	1
10	165,297,834	14,255.00	575.00	24.8	95	12
11	1,602,117,468	too long	5,227.00	-	1005	125

Specification: Obvious correctness, **no** efficiency Optimized (automata-based): Efficient, **no** correctness proof

< 🗇 🕨

SCIENCES & TECHNOLOGIES Outline

Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

Introduction

- 2 Logical specification
- Automata-based generation

4 Counting

- Matching pair removal
- Validation
- Formal proof

Conclusion

< 🗇 🕨

→ E > < E</p>

SCIENCES & TECHNOLOGIES Counting

From the automata-based algorithm

Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal alidation formal proof

Let $n_{n_1,\ldots,n_{r+1},l}$ be the number of PLWs appending some word of length l to some word whose subword of pending symbols is $[n_1 (\ldots [n_{r+1}, The generating function])]$

$$N(x,t) = \sum_{l,r \ge 0} \sum_{n_1, \dots, n_{r+1} \ge 0} n_{n_1, \dots, n_{r+1}, l} u_1^{n_1} \dots u_{r+1}^{n_{r+1}} x^l t^r$$

is the unique formal power series solution of the equation

$$N(x,t) = 1 + x(t^{-1} (N(x,t) - N(x,0))_{|u_1|=0,\forall i \ge 2.u_i|=u_{i-1}} + u_1^{-1} (N(x,t) - N(x,t)_{|u_1|=0}) + u_1 N(x,t) + t (u_2 - u_1)^{-1} (u_2 N(x,t)_{|\forall i \ge 1.u_i|=u_{i+1}} - u_1 N(x,t)_{|\forall i \ge 2.u_i|=u_{i+1}})).$$

Introduction Logical specification Automata-based generation

Matching pair removal Validation Formal proof

Counting

Conclusion

Another decomposition of planar Lehman words

By matching pair removal

SCIENCES & TECHNOLOGIES

Introduction Logical specification Automata-based generation Counting

Matching pair removal Validation Formal proof

Another decomposition of planar Lehman words By matching pair removal

Let \mathcal{P}_2 be the set of words on $\{(,), [,]\}$ composed of ε , the words [u] v whenever u and v are in \mathcal{P}_2 , and the words (u) v whenever $u \circ v$ is in \mathcal{P}_2 and the restriction of u to $\{(,)\}$ is a Dyck word.

SCIENCES & TECHNOLOGIES

Introduction Logical specification Automata-based generation Counting

Matching pair removal Validation Formal proof

Another decomposition of planar Lehman words By matching pair removal

Let \mathcal{P}_2 be the set of words on $\{(,), [,]\}$ composed of ε , the words [u] v whenever u and v are in \mathcal{P}_2 , and the words (u) v whenever $u \circ v$ is in \mathcal{P}_2 and the restriction of u to $\{(,)\}$ is a Dyck word.

Theorem 1 [Cori75, Property II.7]

 \mathcal{P}_2 and the set \mathcal{P}_1 of planar Lehman words are in length-preserving one-to-one correspondence.

SCIENCES & TECHNOLOGIES

Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

Another decomposition of planar Lehman words By matching pair removal

Let \mathcal{P}_2 be the set of words on $\{(,), [,]\}$ composed of ε , the words [u] v whenever u and v are in \mathcal{P}_2 , and the words (u) v whenever $u \circ v$ is in \mathcal{P}_2 and the restriction of u to $\{(,)\}$ is a Dyck word.

Theorem 1 [Cori75, Property II.7]

 \mathcal{P}_2 and the set \mathcal{P}_1 of planar Lehman words are in length-preserving one-to-one correspondence.

Definition

The <u>cut number</u> c(w) of a word $w \in \{(,), [,]\}^*$ is the number of its prefixes whose restriction to parentheses is a Dyck word. By convention, $c(\varepsilon) = 1$.

Conclusion

Matching pair removal Validation Formal proof

Let $l_0(n)$ (resp. $l_0(n, k)$) be the number of planar Lehman words of size *n* (resp. with cut number *k*).

Proposition

 $L_0(x) = \sum_{n \ge 0} l_0(n) x^n$ and $M(x, y) = \sum_{n \ge 1} \sum_{k=2}^{2n+1} l_0(n, k) x^{n-1} y^{k-1}$ satisfy

$$L_0(x) = 1 + xM(x, 1)$$

$$M(x, y) = y + y^2 + xy(1 - y)^{-1}(M(x, 1) - y^2M(x, y))$$

$$+ xy^2M(x, y) + x^2y^2M(x, y)^2$$

 $\to I_0(n) = \frac{2(2n)!3^n}{n!(n+2)!}$ [Tutte63]

ヘロン 人間 とくほ とくほ とう

= 990

SCIENCES &

Validation

Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

		Prolog		
		spec.	optim.	pair removal
n	$l_0(n)$	time (s)	time (s)	time (s)
0-4	-	0.00	0.00	0.00
5	2,916	0.03	0.01	0.00
6	24,057	0.41	0.08	0.06
7	208,494	5.13	0.65	0.65
8	1,876,446	68.95	5.99	7.23
9	17,399,772	923.94	55.20	81.47
10	165,297,834	14,255.00	575.00	910.22
11	1,602,117,468	too long	5,227.00	10,129.66

Proper decomposition \Rightarrow declarativeness **and** better efficiency

How to discover good decompositions?

sciences & Technologies Formal proof Principle

Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair remova Validation Formal proof

Theorem 1 (reminder)

 \mathcal{P}_2 and the set \mathcal{P}_1 of planar Lehman words are in length-preserving one-to-one correspondence.

sciences & Technologies Formal proof Principle Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

Theorem 1 (reminder)

 \mathcal{P}_2 and the set \mathcal{P}_1 of planar Lehman words are in length-preserving one-to-one correspondence.

• A paper-and-pen proof fits in two pages [Cori75, pages 134-135]

sciences & Technologies Formal proof Principle Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

Theorem 1 (reminder)

 \mathcal{P}_2 and the set \mathcal{P}_1 of planar Lehman words are in length-preserving one-to-one correspondence.

- A paper-and-pen proof fits in two pages [Cori75, pages 134-135]
- How hard is it to prove this theorem formally?

sciences & TECHNOLOGIES Formal proof Principle Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

Theorem 1 (reminder)

 \mathcal{P}_2 and the set \mathcal{P}_1 of planar Lehman words are in length-preserving one-to-one correspondence.

- A paper-and-pen proof fits in two pages [Cori75, pages 134-135]
- How hard is it to prove this theorem formally?
- First experiment with Coq (proof assistant, calculus of inductive constructions, based on the theory of dependent types)

ヘロト ヘ戸ト ヘヨト ヘヨト

Some Cog code

Definition of \mathcal{P}_2

Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

 \mathcal{P}_2 is the set of words on $\{(,), [,]\}$ composed of ε , the words [u] v whenever u and v are in \mathcal{P}_2 and the words (u) v whenever $u \circ v$ is in \mathcal{P}_2 and the restriction of u to $\{(,)\}$ is a Dyck word.

sciences & technologies Some Cog code

Definition of \mathcal{P}_2

Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 \mathcal{P}_2 is the set of words on $\{(,),[,]\}$ composed of ε , the words [u] v whenever u and v are in \mathcal{P}_2 and the words (u) v whenever $u \circ v$ is in \mathcal{P}_2 and the restriction of u to $\{(,)\}$ is a Dyck word.

```
Inductive plw2 : nat -> nat -> nat -> nat -> word -> Prop :=
| plw2mty :
    forall n m : nat, plw2 (S n) n (S m) m nil
| plw2bracket :
    forall (fp lp fb lb lpu lbu : nat) (u v : word),
    plw2 fp lpu (S fb) lbu u ->
    plw2 (S lpu) lp (S lbu) lb v ->
    plw2 fp lp fb lb (B fb :: u ++ R fb :: v)
| plw2paren :
    forall (fp lp fb lb lpu lbu : nat) (u v : word),
    dwpa (S fp) lpu (rmBR u) ->
    plw2 (S fp) lp fb lb (u ++ v) ->
    plw2 fp lp fb lb (P fp :: u ++ A fp :: v).
```

sciences & technologies Some Cog code

Definition of \mathcal{P}_2

Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 \mathcal{P}_2 is the set of words on $\{(,),[,]\}$ composed of ε , the words [u] v whenever u and v are in \mathcal{P}_2 and the words (u) v whenever $u \circ v$ is in \mathcal{P}_2 and the restriction of u to $\{(,)\}$ is a Dyck word.

```
Inductive plw2 : nat -> nat -> nat -> nat -> word -> Prop :=
| plw2mty :
    forall n m : nat, plw2 (S n) n (S m) m nil
| plw2bracket :
    forall (fp lp fb lb lpu lbu : nat) (u v : word),
    plw2 fp lpu (S fb) lbu u ->
    plw2 (S lpu) lp (S lbu) lb v ->
    plw2 fp lp fb lb (B fb :: u ++ R fb :: v)
| plw2paren :
    forall (fp lp fb lb lpu lbu : nat) (u v : word),
    dwpa (S fp) lpu (rmBR u) ->
    plw2 (S fp) lp fb lb (u ++ v) ->
    plw2 fp lp fb lb (P fp :: u ++ A fp :: v).
```

With labels

Some Coq code

Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

Definition of \mathcal{P}_1

Inductive plw1 : nat -> nat -> nat -> nat -> word -> Prop :=
| plw1ax :
 forall fp lp fb lb : nat, forall w : word,
 dws fp lp fb lb w -> canonical w -> plw1 fp lp fb lb w.

Main lemma (one-half of Theorem 1)

Lemma imp21 (fp lp fb lb : nat) (w : word) :
 plw2 fp lp fb lb w -> plw1 fp lp fb lb w.

イロト イポト イヨト イヨト

Proving experience

Introduction Logical specification Automata-based generation Counting

Conclusion

Matching pair removal Validation Formal proof

Metrics

	Nb. of lines	Nb. of	Nb. of lines
Subject	for defs.	lemmas	of proof
words (lists)	7	6	56
Dyck words	6 (× 2)	14	216
Shuffles	12 (+16+2)	32	213
\mathcal{P}_1	8	3	384
\mathcal{P}_2	13	-	-
$\mathcal{P}_2\subseteq \mathcal{P}_1$	-	1	29
Totals	57	56	898

- $\bullet~$ Two families of Dyck words \rightarrow Many lemmas repeated twice
- Suggests a more practical characterization of Dyck word shuffles: The restriction to each alphabet is a Dyck word

SCIENCES & TECHNOLOGIES Outline

Introduction Logical specification Automata-based generation Counting Conclusion

- 2 Logical specification
- 3 Automata-based generation

4 Counting

イロト イポト イヨト イヨト

ъ

- Two characterizations of planar Lehman words
 - Validated by bounded-exhaustive testing (up to size 7, > 200,000 cases)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- A 🖻 🕨

- Two characterizations of planar Lehman words
 - Validated by bounded-exhaustive testing (up to size 7, > 200,000 cases)
 - "A proper decomposition implies the definition" is formally proved (the reverse implication is ongoing work)

< 🗇 🕨

- Two characterizations of planar Lehman words
 - Validated by bounded-exhaustive testing (up to size 7, > 200,000 cases)
 - "A proper decomposition implies the definition" is formally proved (the reverse implication is ongoing work)
- Efficient planar Lehman word generation algorithms

< 🗇 🕨

- Two characterizations of planar Lehman words
 - Validated by bounded-exhaustive testing (up to size 7, > 200,000 cases)
 - "A proper decomposition implies the definition" is formally proved (the reverse implication is ongoing work)
- Efficient planar Lehman word generation algorithms
- Differential testing library for logical specifications

- Two characterizations of planar Lehman words
 - Validated by bounded-exhaustive testing (up to size 7, > 200,000 cases)
 - "A proper decomposition implies the definition" is formally proved (the reverse implication is ongoing work)
- Efficient planar Lehman word generation algorithms
- Differential testing library for logical specifications

http://www.disp.uniroma2.it/users/senni/ validation.html

ヘロト ヘアト ヘビト ヘ

- Two characterizations of planar Lehman words
 - Validated by bounded-exhaustive testing (up to size 7, > 200,000 cases)
 - "A proper decomposition implies the definition" is formally proved (the reverse implication is ongoing work)
- Efficient planar Lehman word generation algorithms
- Differential testing library for logical specifications

http://www.disp.uniroma2.it/users/senni/ validation.html

ヘロト ヘアト ヘビト ヘ

 A formal methodology for combinatorial object/data structures generation and counting

< < >> < <</>

· < 프 > < 프 >

 A formal methodology for combinatorial object/data structures generation and counting

"Think and specify, test and prove"

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(신문) (문문

• A formal methodology for combinatorial object/data structures generation and counting

"Think and specify, test and prove"

Optimization (filter promotion) by general-purpose formal transformations

• A formal methodology for combinatorial object/data structures generation and counting

"Think and specify, test and prove"

- Optimization (filter promotion) by general-purpose formal transformations
- Application to the formal specification of rooted maps and hypermaps of any positive genus (generation is validated, counting is ongoing work)