
Introduction
Logical specification

Automata-based generation
Counting

Conclusion

Specification and Validation of Algorithms
Generating Planar Lehman Words

Alain Giorgetti Valerio Senni

University of Franche-Comté
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Introduction
Motivations

D. Zeilberger: “Teach your computer how to do research!”

Computer-assisted design and validation of efficient
enumeration algorithms

From a high-level (formal) specification
Whenever possible, optimization by transformations
Otherwise, validation of efficient algorithms wrt their
specification

Intensive testing for early error detection
Computer proof of equivalence (formal reasoning)

Application to Combinatorics
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Combinatorial case study

Planar Lehman-Lenormand words
Code for rooted planar maps
Proposed by A. Lehman
Independently proposed by C. Lenormand [Cori75]
Studied by T. R. S. Walsh
Shuffles of two Dyck words with forbidden subwords

A. Giorgetti & V. Senni Planar Lehman word generation algorithms 3 / 31



Introduction
Logical specification

Automata-based generation
Counting

Conclusion

Motivations
Planar Lehman words

Dyck words
Definition

A Dyck word of length 2n (size n) contains n pairs of
parentheses (possibly nested) which correctly match

Example: ( ( ) ) ( ( ( ) ( ) ) )
Grammar: D ::= ε | (D )D
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Planar Lehman words
Definition

Planar Lehman word
A planar Lehman word (PLW) is any shuffle of a Dyck word on
the alphabet {(, )} and a Dyck word on the alphabet {[, ]}, which
does not contain any subword [ ( ] ) composed of two pairs [ ]
and ( ) matching in the Dyck words (canonicity property).

Forbidden pattern . . . [. . . (. . .] . . .) . . .
9 planar Lehman words with 4 letters:
( ( ) ) ( [ ] ) ( [ ) ] ( ) ( ) ( ) [ ] [ ( ) ] [ [ ] ] [ ] ( ) [ ] [ ]

1 noncanonical Dyck word shuffle with 4 letters: [ ( ] )
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Logic programming

Programs are sets of rules (Horn clauses) of the form
H :- A1 ∧...∧ An

(meaning, H holds if Ai holds for i = 1, . . . ,n )

Example
ordered([]).
ordered([x]).
ordered([x1,x2|L]) :- x1 ≤ x2 ∧ ordered([x2|L]).

Query evaluation
1 Pick leftmost atom in current query: Q = A∧R
2 Find unifying head: Aσ = Hσ
3 Rewrite to get a new query: (A1 ∧...∧ An ∧R)σ
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Logic Programming
Generation

ordered([]).
ordered([x]).
ordered([x1,x2|L]) :- x1 ≤ x2 ∧ ordered([x2|L]).

as a generator:
ordered(L).
=⇒ =⇒

=⇒ =⇒ L = []

=⇒ =⇒ L = [x]

=⇒ =⇒ L = [x1,x2] with x1 ≤ x2

. . . L = [x1,x2,x3] with x1 ≤ x2 ∧ x2 ≤ x3
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Specification
Labelled Dyck words on {(, )}

Labels identify matching pairs in words
(1(2)2(3)3)1(4)4(5(6(7)7(8)8)6)5

Letters encode parentheses and brackets
’(’→ p ’)’→ a ’[’→ b ’]’→ r

Grammar D ::= ε | (D )D

dw pa ( [ ] , 0 , ) .
dw pa ( W, L ,C) :− i n (LU,0 , L ) , LV is L−LU−1,

LV >= 0 , D is C+1 , E is LU+D,
dw pa (U, LU,D) , dw pa (V, LV ,E) ,
append ( [ p (C ) |U] , [ a (C ) |V] ,W) .

Similar predicate dw br for labelled Dyck words on {[, ]}
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Specification
Dyck word shuffles

s h u f f l e ( [ ] , [ ] , [ ] ) .
s h u f f l e ( [ X |U] , [ ] , [ X |U ] ) .
s h u f f l e ( [ ] , [ X |V ] , [ X |V ] ) .
s h u f f l e ( [H |U] , [ K |V ] , [H |W] ) :−

s h u f f l e (U , [ K |V] ,W) .
s h u f f l e ( [H |U] , [ K |V ] , [ K |W] ) :−

s h u f f l e ( [H |U] ,V,W) .

dws (W, L ) :− i n (LU,0 , L ) , LV is L−LU, LV>=0,
dw pa (U, LU, 0 ) , dw br (V, LV , 0 ) , s h u f f l e (U,V,W) .
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Specification
Planar Lehman words

plw (W,N) :− dws (W,N) , canon ica l (W) .

Forbidden pattern . . . [n. . . (m. . .]n . . .)m . . .

canon ica l (W) :− \+ noncanonical (W) .

noncanonical (W) :− append (C , [ a (M) | ] ,W) ,
append (B , [ r (N ) | ] ,C) , append (A , [ p (M) | ] ,B) ,
append ( , [ b (N ) | ] ,A ) .

Executable, thanks to Prolog backtracking mechanism

Not efficient, due to rejection of non-canonical shuffles
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Advantages of Logic Programming

Specification is executable

Many available techniques, such as program transformations→
optimization by filter promotion (e.g. [Senni and Fioravanti,
TAP’12], constraint-based)

Not yet achieved→ Independent design of an efficient algorithm,
and its validation wrt the former specification

A general ‘differential testing’ framework:
generator acceptor

specification implementation
implementation specification
implementation1 implementation2

...
...
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Automata-based generation

For an efficient generation algorithm

Principle
Generate words letter by letter, from left to right
Preserve the canonicity property during generation

Idea
For Dyck words: count pending (unclosed) symbols (or
push them on a stack)
For Dyck word shuffles: two counters? two stacks?
The canonicity property can be detected with the help of a
single stack of symbols
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Algorithm at work
Example

Forbidden pattern [ ( ] )

final word ( [ [ ) ( [ ( ) ] ) ] ]
word prefix

( [ [ ) ( [ ( ) ] ) ] ]

stack

counters

More than a stack: parentheses under brackets are
sometimes pulled from the ‘stack’
Counting blocks of ’[’s is sufficient→ stack of counters
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Automata-based generation
Logical specification

Characteristic property of a planar Lehman word W

gl0w (W, Size ) :− L is 2∗Size , gl0w (W, [ 0 ] , L ) .

gl0w ( [ ] , [ 0 ] , 0 ) .
gl0w ( [ p |W] , I , L ) :− L > 0 , NewL is L−1,

gl0w (W, [ 0 | I ] ,NewL ) .
gl0w ( [ b |W] , [N | I ] , L ) :− L > 0 , NewL is L−1,

NewN is N+1 , gl0w (W, [ NewN | I ] ,NewL ) .
gl0w ( [ r |W] , [N | I ] , L ) :− L > 0 , N > 0 , NewL is L−1,

NewN is N−1, gl0w (W, [ NewN | I ] ,NewL ) .
gl0w ( [ a |W] , [ N1,N2 | I ] , L ) :− L > 0 , NewL is L−1,

NewN is N1+N2, gl0w (W, [ NewN | I ] ,NewL ) .

Simple, but many failure branches (finally non-empty stacks)
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Optimization

Controlling the stack content with the expected word length
provides efficiency
cl0w (W, Size ) :− L is 2∗Size , cl0w (W, 0 , 0 , [ 0 ] , L ) .

cl0w ( [ ] , , , [ 0 ] , 0 ) .
cl0w ( [ p |W] ,B,P, I , L ) :− L>0, L>=B+P, NeL is L−1,

NP is P+1 , cl0w (W, B,NP, [ 0 | I ] , NeL ) .
cl0w ( [ b |W] ,B,P , [ C | I ] , L ) :− L>0, L>=B+P, NeL is L−1,

NC is C+1 , NB is B+1 , cl0w (W,NB, P , [NC| I ] , NeL ) .
cl0w ( [ r |W] ,B,P , [ C | I ] , L ) :− L>0, L>=B+P, C>0, NeL is L−1,

NC is C−1, NB is B−1, cl0w (W,NB, P , [NC| I ] , NeL ) .
cl0w ( [ a |W] ,B,P , [ C1,C2 | I ] , L ) :− L>0, L>=B+P, NeL is L−1,

NC is C1+C2, NP is P−1, cl0w (W, B,NP, [NC| I ] , NeL ) .

Translated into a C program cl0w.c
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Validation

Input: word size (number of symbol pairs)

plw : specification

gl0w : stack-based (Prolog/C) implementation

cl0w : optimized, stack-based (Prolog/C) implementation

Validation

generator acceptor

plw gl0w
gl0w plw
plw cl0w
cl0w plw

Equivalence checked, incrementally, up to input size 7 (Prolog/C)
Automated: performed by LP-queries, using built-in evaluation mechanisms
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Performances

Prolog C
spec. optim. speedup rpm.c cl0w.c

n l0(n) time (s) time (s) factor time (s) time (s)
0-4 - 0.00 0.00 NS 0 0

5 2,916 0.03 0.01 3.0 0 0
6 24,057 0.41 0.08 5.1 0 0
7 208,494 5.13 0.65 7.9 0 0
8 1,876,446 68.95 5.99 11.5 0 0
9 17,399,772 923.94 55.20 16.7 9 1

10 165,297,834 14,255.00 575.00 24.8 95 12
11 1,602,117,468 too long 5,227.00 - 1005 125

Specification: Obvious correctness, no efficiency
Optimized (automata-based): Efficient, no correctness proof
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Counting
From the automata-based algorithm

Let nn1,...,nr+1,l be the number of PLWs appending some word of length
l to some word whose subword of pending symbols is [n1 ( . . . [nr+1 .
The generating function

N(x , t) =
∑
l,r≥0

∑
n1,...,nr+1≥0

nn1,...,nr+1,l un1
1 . . . unr+1

r+1 x l t r

is the unique formal power series solution of the equation

N(x , t) = 1 + x(t−1 (N(x , t)− N(x ,0))|u1:=0,∀i≥2.ui :=ui−1

+ u−1
1

(
N(x , t)− N(x , t)|u1:=0

)
+ u1 N(x , t)

+ t (u2 − u1)
−1 (u2 N(x , t)|∀i≥1.ui :=ui+1

−u1 N(x , t)|∀i≥2.ui :=ui+1)).
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Another decomposition of planar Lehman words
By matching pair removal

Let P2 be the set of words on {(, ), [, ]} composed of ε, the
words [u ] v whenever u and v are in P2, and the words (u ) v
whenever u ◦ v is in P2 and the restriction of u to {(, )} is a
Dyck word.

Theorem 1 [Cori75, Property II.7]
P2 and the set P1 of planar Lehman words are in
length-preserving one-to-one correspondence.

Definition
The cut number c(w) of a word w ∈ {(, ), [, ]}∗ is the number of
its prefixes whose restriction to parentheses is a Dyck word. By
convention, c(ε) = 1.
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Counting
New functional equations

Let l0(n) (resp. l0(n, k)) be the number of planar Lehman words of
size n (resp. with cut number k ).

Proposition

L0(x) =
∑

n≥0 l0(n)xn and M(x , y) =
∑

n≥1
∑2n+1

k=2 l0(n, k)xn−1yk−1

satisfy

L0(x) = 1 + xM(x ,1)
M(x , y) = y + y2 + xy(1− y)−1(M(x ,1)− y2M(x , y))

+ xy2M(x , y) + x2y2M(x , y)2

→ l0(n) =
2(2n)!3n

n!(n+2)! [Tutte63]
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Validation

Prolog
spec. optim. pair removal

n l0(n) time (s) time (s) time (s)
0-4 - 0.00 0.00 0.00

5 2,916 0.03 0.01 0.00
6 24,057 0.41 0.08 0.06
7 208,494 5.13 0.65 0.65
8 1,876,446 68.95 5.99 7.23
9 17,399,772 923.94 55.20 81.47

10 165,297,834 14,255.00 575.00 910.22
11 1,602,117,468 too long 5,227.00 10,129.66

Proper decomposition⇒ declarativeness and better efficiency

How to discover good decompositions?
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Formal proof
Principle

Theorem 1 (reminder)
P2 and the set P1 of planar Lehman words are in
length-preserving one-to-one correspondence.

A paper-and-pen proof fits in two pages
[Cori75, pages 134-135]
How hard is it to prove this theorem formally?
First experiment with Coq (proof assistant, calculus of
inductive constructions, based on the theory of dependent
types)
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Some Coq code
Definition of P2

P2 is the set of words on {(, ), [, ]} composed of ε, the words [ u ] v whenever u and v
are in P2 and the words ( u ) v whenever u ◦ v is in P2 and the restriction of u to {(, )}
is a Dyck word.

Inductive plw2 : nat -> nat -> nat -> nat -> word -> Prop :=
| plw2mty :

forall n m : nat, plw2 (S n) n (S m) m nil
| plw2bracket :

forall (fp lp fb lb lpu lbu : nat) (u v : word),
plw2 fp lpu (S fb) lbu u ->
plw2 (S lpu) lp (S lbu) lb v ->
plw2 fp lp fb lb (B fb :: u ++ R fb :: v)

| plw2paren :
forall (fp lp fb lb lpu lbu : nat) (u v : word),
dwpa (S fp) lpu (rmBR u) ->
plw2 (S fp) lp fb lb (u ++ v) ->
plw2 fp lp fb lb (P fp :: u ++ A fp :: v).

With labels
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Some Coq code

Definition of P1

Inductive plw1 : nat -> nat -> nat -> nat -> word -> Prop :=
| plw1ax :

forall fp lp fb lb : nat, forall w : word,
dws fp lp fb lb w -> canonical w -> plw1 fp lp fb lb w.

Main lemma (one-half of Theorem 1)

Lemma imp21 (fp lp fb lb : nat) (w : word) :
plw2 fp lp fb lb w -> plw1 fp lp fb lb w.
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Proving experience

Metrics

Nb. of lines Nb. of Nb. of lines
Subject for defs. lemmas of proof

words (lists) 7 6 56
Dyck words 6 (× 2) 14 216

Shuffles 12 (+16+2) 32 213
P1 8 3 384
P2 13 - -

P2 ⊆ P1 - 1 29
Totals 57 56 898

Two families of Dyck words→ Many lemmas repeated twice

Suggests a more practical characterization of Dyck word shuffles: The
restriction to each alphabet is a Dyck word
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Summary

Two characterizations of planar Lehman words
Validated by bounded-exhaustive testing

(up to size 7, > 200,000 cases)

“A proper decomposition implies the definition” is formally
proved (the reverse implication is ongoing work)

Efficient planar Lehman word generation algorithms
Differential testing library for logical specifications

http://www.disp.uniroma2.it/users/senni/
validation.html
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Perspectives

A formal methodology for combinatorial object/data
structures generation and counting

“Think and specify, test and prove”

Optimization (filter promotion) by general-purpose formal
transformations
Application to the formal specification of rooted maps and
hypermaps of any positive genus (generation is validated,
counting is ongoing work)
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