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Permutominoes

Permutomino: working definition

Definition

A permutomino of size n is a polyomino (with no holes) having
n rows and n columns, such that for each abscissa (ordinate)
between 1 and n + 1 there is exactly one vertical (horizontal)
bond in the boundary of P with that coordinate.
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A permutomino P of size n is uniquely defined by a pair of
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Permutomino: equivalent definition

A permutomino P of size n is uniquely defined by a pair of
permutations of size n + 1, denoted by π1(P) and π2(P), called
permutations associated with P.

( 6, 3, 9, 8, 12, 11, 13, 1, 5, 10, 4, 7, 2 )=π  1
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Permutomino: equivalent definition

A permutomino P of size n is uniquely defined by a pair of
permutations of size n + 1, denoted by π1(P) and π2(P), called
permutations associated with P.

= ( 9, 6, 8, 13, 11, 10, 12, 3, 4, 7, 2, 5, 1 )π  2
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Permutations associated with permutominoes

A pair of permutations (π1, π2) such that π1(i) 6= π2(i) may not
define a permutomino.

The boundary may be non connected;
The boundary may cross itself.
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Permutations associated with permutominoes

A pair of permutations (π1, π2) such that π1(i) 6= π2(i) may not
define a permutomino.

The boundary may be non connected;
The boundary may cross itself.

2π  = ( 3, 2, 1, 5, 7, 6, 4 )

π  = ( 2, 1, 3, 4, 5, 7, 6 )1 1π  = ( 2, 4, 1, 6, 7, 3, 5 )

π  = ( 5, 1, 6, 7, 3, 2, 4 )2
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Permutominoes

Permutominoes: the origins

The singular locus of a Schubert variety

Introduced in 2003 by Kassel, Lascoux, and Reutenauer,
with the aim of characterizing the singular loci of the
Schubert varieties Xµ in the flag variety for GLn(C).
The name Permutomino (or ‘Permutaomino’) was coined
by Incitti (2006), while studying the problem of determining
the R̃-polynomials associated with a pair (µ, ν) of
permutations.
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Permutominoes

Permutominoes: the origins

Graph of a permutation

The graph of a permutation µ ∈ Sn is the set of points (i , µ(i)),
with i ∈ [n] = {1, . . . ,n}.

Figure: Graph of µ = (3,1,5,4,7,2,9,8,6)
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Permutominoes: the origins

Bruhat order

For each h, k ∈ [n] we set

µ[h, k ] = |{i ∈ [n] : i ≤ h, µ(i) ≥ k}|
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Bruhat order

For each h, k ∈ [n] we set

µ[h, k ] = |{i ∈ [n] : i ≤ h, µ(i) ≥ k}|

µ[6,2]=5
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Permutominoes

Permutominoes: the origins

Bruhat order

Given µ, ν ∈ Sn, and h, k ∈ [n] we set:

(µ, ν)[h, k ] = ν(h, k)− µ(h, k)

(µ, )[6,2]=1
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Permutominoes

Permutominoes: the origins

Proposition (Björner, Brenti, 2005)

Given µ, ν ∈ Sn, µ ≤ ν in the Bruhat order iff (µ, ν)[h, k ] ≥ 0, for
all (h, k) ∈ N2.
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Permutominoes: the origins

Planar representation of a pair of permutations

The planar representation of (µ, ν) is obtained as follows:
we use the graphs of µ, ν,
if µ(i) = ν(i) we have a double point,
we connect the other points using horizontal and vertical
lines.
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Permutominoes

Permutominoes: the origins

Figure: Planar representation of (µ, ν), with
µ = (3,1,5,4,7,2,9,8,6), ν = (7,8,2,4,9,6,3,1,5)
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Permutominoes: the origins

Planar representation of a pair of permutations

Bijective correspondence between the disjoint cycles of µ−1ν
and the closed paths in the planar representation of (µ, ν).
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Diagram of a pair of permutations

Given µ, ν ∈ Sn, the multiplicity mapping of (µ, ν):

(µ, ν)[h, k ] = ν(h, k)− µ(h, k), with (h, k) ∈ R2
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Figure: Diagram of (µ, ν)
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Permutominoes: the origins

Permutominoes

A pair (µ, ν) is a permutomino if
(µ, ν)[h, k ] ∈ {0,1}, for all (h, k) ∈ R2;
(µ, ν) has no double points;
the support of (µ, ν) is connected and with no holes.
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Permutominoes

Permutominoes: the origins

Generation of orthogonal polygons

Permutominoes have been considered independently by
Tomás, Bajuelos (2004);
Quadratic-time algorithm for the random generation of
orthogonal polygons with a fixed number of vertices;
Orthogonal polygons: simple polygons without holes
where the edges meet at right angles.
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Permutominoes: the origins

Generic orthogonal polygons with n vertices may be
obtained from grid n-ogons: n-vertex orthogonal polygons
having exactly one edge for every line of the grid.
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Permutominoes: the origins

Generation of orthogonal polygons

Tomás, Bajuelos (2004) provide a quadratic-time algorithm
for the random generation of grid n-ogons by means of the
INFLATE-PASTE algorithm.
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Contents of the talk

1 Enumeration of (various classes of) permutominoes
according to the size;

2 Characterization and enumeration of pairs of permutations
defining (various classes of) permutominoes.
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Permutominoes enumeration

We consider the enumeration of some classes of
permutominoes:

column-convex permutominoes,
convex permutominoes,
directed permutominoes
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Column-convex permutominoes

Column-convex permutominoes

ECO method

We present an algorithm for the recursive generation of
column-convex permutominoes such each object of size
n + 1 is obtained in a unique way from an object of size n.
We follow the ECO method, Enumeration of Combinatorial
Objects developed by Pinzani and his team starting from
’90.
ECO method has been applied to several problems of
enumeration and generation of combinatorial objects.
It is strictly related to the concept of generating tree
introduced by West (1994).
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Generation of column-convex permutominoes

Generation of column-convex permutominoes

To a column-convex permutomino P we assign the label
(h,d ,w).
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7

(4,2,1)
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Permutominoes Enumeration

Column-convex permutominoes

Reentrant points

Encode the boundary of the permutomino using north,
east, south and west unit steps.
Any occurrence of a sequence NE , ES, SW , or WN in the
word encoding P defines a salient point of P; any
occurrence of a sequence EN, SE , WS, or NW defines a
reentrant point of P.
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Permutominoes Enumeration

Column-convex permutominoes

Reentrant points

The difference between the number of salient and reentrant
points in any closed path is equal to 4. In a column-convex
permutomino of size n we have exactly one reentrant point for
each abscissa between 1 and n − 1.
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Permutominoes Enumeration

Column-convex permutominoes

The generating operator

Let Cn be the set of column-convex permutominoes of
dimension n.
We present a construction such that each element of Cn+1
is produced from exactly one element of Cn.
The idea is to let permutominoes grow from size n to n + 1
by adding a new reentrant point on the right.
Our construction consists of four operations, α, β, γ, δ:

- α adds an EN-reentrant point;
- β adds a SE-reentrant point;
- γ adds a WS-reentrant point;
- δ adds a NW -reentrant point;
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d

h

w

α

h

d+1

w

(h,d ,w) (h − i + 1,d + i ,w) 1 ≤ i ≤ h + 1
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d

h

w

α

w

h-1
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Polyominoes determined by permutations

Permutominoes Enumeration

Column-convex permutominoes

Operation α

w

d+h+1

h=0

d

h

w

α

(h,d ,w) (h − i + 1,d + i ,w) 1 ≤ i ≤ h + 1
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Operation β

w

dd

h+1

β

h

w

(h,d ,w) (d + h − i + 1, i ,w) 1 ≤ i ≤ d
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Operation β

β

d
1

h+2

ww

h

(h,d ,w) (d + h − i + 1, i ,w) 1 ≤ i ≤ d



Polyominoes determined by permutations

Permutominoes Enumeration

Column-convex permutominoes

Operation γ

d

h

w

1
γ

h

w+2

(h,d ,w) (h, i ,d + w − i + 1) 1 ≤ i ≤ d
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Operation γ

d

d

w

h
h

w+1

γ

(h,d ,w) (h, i ,d + w − i + 1) 1 ≤ i ≤ d



Polyominoes determined by permutations

Permutominoes Enumeration

Column-convex permutominoes

Operation δ

d
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h

(h,d ,w) (h,d + i ,w − i + 1) 1 ≤ i ≤ w + 1



Polyominoes determined by permutations

Permutominoes Enumeration

Column-convex permutominoes

Operation δ

h

d+1

w=0

δ

w

h

d

(h,d ,w) (h,d + i ,w − i + 1) 1 ≤ i ≤ w + 1
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The generating operator

For a column-convex permutomino P we denote ϑ(P) the set of
permutominoes produced by P through the application of α, β,
γ, and δ.

Theorem (Beaton, Disanto, Guttmann, R, 2010)

Any column-convex permutomino of size n ≥ 2 is uniquely
obtained through the application of the operator ϑ to a
column-convex permutomino of size n − 1.
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The generating tree

The recursive construction of ϑ can be formally described using
generating trees (or succession rules). The application of ϑ to a
column-convex permutomino with a generic label (h,d ,w), produces
2d + h + w + 2 column-convex permutominoes according to the
following rule:

(h,d ,w) α  (h − i + 1,d + i ,w) 1 ≤ i ≤ h + 1
β  (d + h − i + 1, i ,w) 1 ≤ i ≤ d
γ  (h, i ,d + w − i + 1) 1 ≤ i ≤ d
δ  (h,d + i ,w − i + 1) 1 ≤ i ≤ w + 1.

with root (0,1,0), which is the label of the one cell permutomino.
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The functional equation

The construction of operator ϑ can be translated onto generating
functions:

F (x, y, z) =
∑
P∈C

xh(P)yd(P)zw(P)

= y + xy + yz + 2y2 + 3x2y + 2xyz + 3z2y + 4xy2 + 4zy2 + 6y3 + . . .

F (x, y, z) = y +
∑
P∈C

xhyd+1zw + . . . + x0yd+h+1zw +
∑
P∈C

xd+hy1zw + . . . + xh+1yd zw

+
∑
P∈C

xhyzd+w + . . . + xhyd zw+1 +
∑
P∈C

xhyd+1zw + . . . + xhyd+w+1z0
,
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The functional equation

We obtain the following functional equation

F (x, y, z) = y +
yz

z − y
F (x, z, z) −

y2

z − y
F (x, y, y) +

xy

x − y
F (x, x, z) −

y2

x − y
F (y, y, z).

From this equation we are able to compute the first 200 terms of
sequence fn beginning with:

1,4,22,152,1262,12232,135544,1690080,23417928, . . .

We have not been able to solve the equation, just to find lower
and upper bounds for the sequence.
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A lower bound: directed column-convex
permutominoes

To count directed column-convex permutominoes we have to
restrict the operator ϑ:

Let ϑ′ be the operator which performs the operations α, β,
and δ defined before (but not operation γ).
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permutominoes

To count directed column-convex permutominoes we have to
restrict the operator ϑ:

Let ϑ′ be the operator which performs the operations α, β,
and δ defined before (but not operation γ).

d

h

w

1
γ

h

w+2
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A lower bound: directed column-convex
permutominoes

Starting from the one cell permutomino, the operator ϑ′

generates all column-convex permutominoes which do not
contain any WS reentrant point.
More precisely, the column-convex permutominoes which
are north-west directed (briefly, directed).
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A lower bound: directed column-convex
permutominoes

Let G(x , y , z) be the g.f. of directed column convex
permutominoes, and g(y) = G(y , y , y). Using the operator ϑ′,
we obtain

g(y) = 2y g(y) + y2g′(y) + y ,

Proposition (Beaton, Disanto, Guttmann, R, 2010)

The number of directed column-convex permutominoes of size
n is (n+1)!

2 .
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An upper bound: column-convex permutominides

Permutominides

(Informal definition) a permutominide is a set of cells:
which can be edge-connected or vertex-connected
having exactly one side for every abscissa and exactly one
side for every ordinate.
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As a permutomino – a permutominide is defined by a pair of
permutations.
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Let us consider column-convex permutominides
To a cc-permutominide P associate a side permutation
π(P);
The permutation π(P) does not uniquely determine P;
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An upper bound: column-convex permutominides

Proposition

Given a permutation σ of size n + 1 we have 2n−2 cc-permutominides
of size n having σ as side permutation.

Let Γ ⊆ {4, . . . ,n + 1}: join σ(1) with σ(3) and in sequence all the
points σ(i), with i ∈ Γ, until reach the right side of the minimal
bounding square; the permutominide is uniquely determined.
Example: Γ = {4,7,8}.
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An upper bound: column-convex permutominides

Proposition

The number of column convex permutominides of size n is
2n−2(n + 1)!
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Numerical approach

Tony Guttmann and Nick Beaton applying numerical analysis
were led to conjecture that

fn ∼ k (n + 1)! hn ,

where k = 0.3419111 and h = 1.385933.
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Convex permutominoes

A generating tree for convex permutominoes

In a convex permutomino of size n reentrant points form a
permutation of length n − 1;
We restrict the construction of ϑ to the class of convex
permutominoes;
We obtain a factorial generating tree.



Polyominoes determined by permutations

Permutominoes Enumeration

Convex permutominoes

Convex permutominoes

A generating tree for convex permutominoes

In a convex permutomino of size n reentrant points form a
permutation of length n − 1;
We restrict the construction of ϑ to the class of convex
permutominoes;
We obtain a factorial generating tree.



Polyominoes determined by permutations

Permutominoes Enumeration

Convex permutominoes

Convex permutominoes

A generating tree for convex permutominoes

In a convex permutomino of size n reentrant points form a
permutation of length n − 1;
We restrict the construction of ϑ to the class of convex
permutominoes;
We obtain a factorial generating tree.



Polyominoes determined by permutations

Permutominoes Enumeration

Convex permutominoes

Convex permutominoes

A generating tree for convex permutominoes

In a convex permutomino of size n reentrant points form a
permutation of length n − 1;
We restrict the construction of ϑ to the class of convex
permutominoes;
We obtain a factorial generating tree.



Polyominoes determined by permutations

Permutominoes Enumeration

Convex permutominoes

Enumeration of convex permutominoes

The functional equation can be solved using the kernel
method, and leads to an algebraic generating function.
The number of convex permutominoes of size n is :

2 (n + 3) 4n−2 − n
2

(
2n
n

)
n ≥ 1, (1)

the first few terms being 1,4,18,84,394,1836,8468, . . .
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Exhaustive generation of convex permutominoes

Using the ECO construction Grazzini, Pergola and Poneti
(2008) determined an algorithm for the exhaustive
generation of convex permutominoes of given size;
The algorithm works in Constant Amortized Time.
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Another proof for the number of convex
permutominoes

Another proof for the number of convex permutominoes

A different proof for the number of convex permutominoes
has been obtained independently by Boldi, Lonati,
Radicioni and Santini in 2007.
Consists in three steps:

1 encoding a convex permutomino of size n in terms of a pair
of permutations (ν,h): (the transform of a permutation pair);

2 characterization of admissible pairs of permutations;
3 enumeration of such pairs.
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A bijective proof for the number of convex
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A bijective proof for the number of convex permutominoes has
been given by Disanto, Duchi, Pinzani, R (2012).

Proposition

The number of convex permutominides of size n is
2 (n + 1) 4n−2.
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2 (n + 1) 4n−2.



Polyominoes determined by permutations

Permutominoes Enumeration

Convex permutominoes

A bijective proof for the number of convex
permutominoes

Proposition

The number of convex permutominides whose boundary
crosses itself is equal to n

2

(2n
n

)
− 4n−1.

By difference we obtain the formula for the number of convex
permutominoes.
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Permutominoes Enumeration

Convex permutominoes

Parallelogram permutominoes

Proposition (Fanti, Frosini, Grazzini, Pinzani, R, 2007)

The number of parallelogram permutominoes of size n is equal
to the n-th Catalan number,

1
n + 1

(
2n
n

)
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Parallelogram permutominoes

Proof.

A parallelogram permutomino of size n is uniquely
determined by its upper path,
which is a Dyck path of length 2n;
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Parallelogram permutominoes

Kreweras involution

The mapping of the upper path into the lower path of the
parallelogram permutomino is an involution on Dyck paths:
the so-called Kreweras involution on Dyck paths
[Kreweras, 1970];
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Kreweras involution

The mapping of the upper path into the lower path of the
parallelogram permutomino is an involution on Dyck paths:
the so-called Kreweras involution on Dyck paths
[Kreweras, 1970];
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Permutominoes Enumeration

Convex permutominoes

Directed-convex permutominoes

Proposition (Fanti, Frosini, Grazzini, Pinzani, R, 2007)

The number of directed convex permutominoes of size n is
equal to

(2n−1
n

)
.
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Convex permutominoes

Enumeration of permutominides

All the enumeration results have been obtained in bijective way,
mapping the permutominide into a lattice path.

permutominides 1 2 3 4 5 6 7 closed form

parallelogram 1 3 10 35 126 426 . . .
(

2n−1
n

)
directed-convex 1 4 16 64 256 1024 . . . 4n−1

convex 1 6 32 160 768 3584 . . . 2(n + 1)4n−2

row-convex 1 6 48 480 5768 80640 . . . (n + 1)! 2n−2



Polyominoes determined by permutations

Permutations associated with permutominoes

Permutations associated with permutominoes

Problem: characterizing permutations associated with
permutominoes.
We start from the characterization of permutations
associated with convex permutominoes.

2π  = ( 3, 2, 1, 5, 7, 6, 4 )

π  = ( 2, 1, 3, 4, 5, 7, 6 )1 1π  = ( 2, 4, 1, 6, 7, 3, 5 )

π  = ( 5, 1, 6, 7, 3, 2, 4 )2
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Permutations associated with convex permutominoes

Characterization of the following sets:
1 P1(n) = {π1(P) : P is a convex permutomino of size n}
2 P2(n) = {π2(P) : P is a convex permutomino of size n}
3 A(n) = P1(n) ∪ P2(n)

Example

A convex permutomino and the associated permutations



Polyominoes determined by permutations

Permutations associated with permutominoes

Permutations associated with convex permutominoes

Permutations associated with convex permutominoes

Characterization of the following sets:
1 P1(n) = {π1(P) : P is a convex permutomino of size n}
2 P2(n) = {π2(P) : P is a convex permutomino of size n}
3 A(n) = P1(n) ∪ P2(n)

Example

A convex permutomino and the associated permutations



Polyominoes determined by permutations

Permutations associated with permutominoes

Permutations associated with convex permutominoes

Permutations associated with convex permutominoes

Characterization of the following sets:
1 P1(n) = {π1(P) : P is a convex permutomino of size n}
2 P2(n) = {π2(P) : P is a convex permutomino of size n}
3 A(n) = P1(n) ∪ P2(n)

Example

A convex permutomino and the associated permutations



Polyominoes determined by permutations

Permutations associated with permutominoes

Permutations associated with convex permutominoes

Permutations associated with convex permutominoes

Characterization of the following sets:
1 P1(n) = {π1(P) : P is a convex permutomino of size n}
2 P2(n) = {π2(P) : P is a convex permutomino of size n}
3 A(n) = P1(n) ∪ P2(n)

Example

A convex permutomino and the associated permutations

   =(2 5 6 1 7 3 4)π 1
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Permutations associated with convex permutominoes

Characterization of the following sets:
1 P1(n) = {π1(P) : P is a convex permutomino of size n}
2 P2(n) = {π2(P) : P is a convex permutomino of size n}
3 A(n) = P1(n) ∪ P2(n)

Example

A convex permutomino and the associated permutations

   =(5 6 7 2 4 1 3)2π



Polyominoes determined by permutations

Permutations associated with permutominoes

Square permutations

Square permutations

Given a permutation π we build its convex hull by joining the
sequences of lrmax, rlmax,rlmin, and lrmin of π.

Example

The convex hull of (3,8,4,6,2,9,1,2,7)
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Given a permutation π we build its convex hull by joining the
sequences of lrmax, rlmax,rlmin, and lrmin of π.

Example

The convex hull of (3,8,4,6,2,9,1,2,7)

interior points
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Square Permutations

Definition (Mansour, Severini, 2007)

A square permutation is a permutation without interior points.
Also known as a convex permutation [Albert, Linton, Ruskuc,
Vatter, Waton].

Example
non square permutation

square permutation
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Non extremal fixed points that belong to two faces are
called double points.

Example
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Fixed Points in a Square Permutation

In a square permutation we have two types of fixed points.
Non extremal fixed points that belong to two faces are
called double points.

Example

simple fixed point
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Fixed Points in a Square Permutation

In a square permutation we have two types of fixed points.
Non extremal fixed points that belong to two faces are
called double points.

Example

double fixed point
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Decomposable square permutations

A permutation is decomposable if it is the direct sum of (at
least) two permutations;
A permutation is m-decomposable if its mirror image is
decomposable.

Lemma

If a permutation π is m-decomposable then there is no
permutomino P such that π1(P) = π.
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Decomposable square permutations

A permutation is decomposable if it is the direct sum of (at
least) two permutations;
A permutation is m-decomposable if its mirror image is
decomposable.

Lemma

If a permutation π is m-decomposable then there is no
permutomino P such that π1(P) = π.

θ

θ'
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Square Permutations and Convex Permutominoes

Proposition (Bernini, Disanto, Pinzani, R, 2007)

1 P1(n) = {π : π is a non m-decomposable square permutation };
2 A(n) = P1(n) ∪ P2(n) = {π : π is a square permutation }.
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Square Permutations and Convex Permutominoes

Proposition (Bernini, Disanto, Pinzani, R, 2007)

1 P1(n) = {π : π is a non m-decomposable square permutation };
2 A(n) = P1(n) ∪ P2(n) = {π : π is a square permutation }.

π  = ( 5, 6, 7, 2, 4, 1, 3 )21π  = ( 2, 5, 6, 1, 7, 3, 4 )
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Square permutations and Convex Permutominoes

Proposition (Fanti, Frosini, Grazzini, Pinzani, R, 2007)

Let [P]∼ = {P ′ convex permutomino : π1(P) = π1(P ′)}; then

|[P]∼| = 2d(P),

where d(P) is the number of double points of π1(P).
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On square permutations

Proposition (Mansour, Severini, 2007)

The number of square permutations of length n is

2(n + 2)4n−3 − 4(2n − 5)

(
2(n − 3)

n − 3

)

Enumeration

Re-obtained by Duchi and Poulalhon (2008) by applying
the ECO method;
And by Albert, Linton, Ruskuc, Vatter and Waton (2011) by
applying the insertion encoding.
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Square permutations

On square permutations

Some bijective problems

Relations between the number of convex permutominoes,
square permutations, and convex polyominoes.
- Cn: number of convex permutominoes of size n,
- Qn: number of square permutations of length n,
- Pn: number of convex polyominoes of semi-perimeter n;

1 Q(n + 2) = C(n + 2) +
(2n

n

)
;

2 P(n + 2) = Q(n + 1) + 4n−2;
3 Give a bijective proof for the number of square

permutations (all the known proofs use analytical methods)
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Square permutations

Square Permutations and Pattern Avoidance

Proposition (Albert, Linton, Ruskuc, Waton, 2011)

The set of square permutations is the set of permutations
avoiding 16 patterns of length 5:

(5 2 3 4 1) (5 2 3 1 4) (5 1 3 4 2) (5 1 3 2 4)
(4 2 3 5 1) (4 2 3 1 5) (4 1 3 5 2) (4 1 3 2 5)
(2 5 3 4 1) (2 5 3 1 4) (1 5 3 4 2) (1 5 3 2 4)
(2 4 3 5 1) (2 4 3 1 5) (1 4 3 5 2) (1 4 3 2 5)
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Square permutations

Square Permutations and Pattern Avoidance

The 16 patterns describe the possibilities to have at least a
point inside the convex hull of a permutation.

(1,4,3,2,5)
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Square Permutations and Pattern Avoidance

The 16 patterns describe the possibilities to have at least a
point inside the convex hull of a permutation.

(1,4,3,5,2)
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Square Permutations and Pattern Avoidance

The 16 patterns describe the possibilities to have at least a
point inside the convex hull of a permutation.

(1,5,3,2,4)
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Square Permutations and Pattern Avoidance

The 16 patterns describe the possibilities to have at least a
point inside the convex hull of a permutation.

(1,5,3,4,2)
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Permutations associated with permutominoes

Square permutations

Square Permutations and Pattern Avoidance

The 16 patterns describe the possibilities to have at least a
point inside the convex hull of a permutation.

(2,4,3,1,5)



Polyominoes determined by permutations

Permutations associated with permutominoes

Square permutations

More on square permutations

The records of a permutation

Open problem: enumerate permutations according to
lrmin, rlmin, lrmax, and rlmax (the records of a
permutation).
Proposed by H. Wilf at the “Conference on Probabilistic
Methods and Enumeration” CRM, Barcelona, 2007.
The number of lrmax is a standard statistic for
permutations: the expected number of lrmax in a random
permutation of large size n is log n + O(n).
Enumerate permutations according to lrmax and rlmax is a
rather simple exercise.
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Square permutations

ECO construction

The ECO construction by Duchi, Poulalhon allows us to
control the records of square permutations;
Disanto, Duchi, Schaeffer, R (2011) modified such a
construction in order to generate all permutations of length
n + 1 starting from those of length n and control the records
of the permutations and the number of internal points.
We have not been able to solve Wilf’s problem yet due to
the complexity of the generating tree associated with the
construction.
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Square permutations

Enumeration of permutations according to the number
of internal points

Proposition (Disanto, Duchi, Schaeffer, R, 2011)

For all i ≥ 0 the generating function of permutations with i
internal points is algebraic of degree 2 and it is a rational
function in the Catalan generating function.

Conjecture

The number of permutations of length n with i internal points
satisfies ∣∣∣S(i)

n

∣∣∣ ∼n→∞
8 · i!

2i (2i)!
· n2i+1 · 4n .
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Permutations associated with permutominoes

Permutations associated with permutominoes

Square permutations are associated with convex
permutominoes.
Problem: What kind of permutations are associated with
column-convex permutominoes? And with
permutominoes?
We provide a characterization of the set of permutations
associated with permutominoes:

A(n) = {π ∈ Sn : π = π1(P) or π = π2(P), for a perm. P}
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Permutations associated with permutominoes

Proposition (R, Socci 2012)

For every permutation π ∈ Sn there is at least a column-convex
permutomino P such that π = π1(P) or π = π2(P), i.e.
A(n − 1) = Sn.

Proof.

It consists in an algorithm for building a column-convex
permutomino of size n − 1 from any given permutation π ∈ Sn.
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Permutations associated with permutominoes

Proof.

Let π ∈ Sn, A = (1, π(1)), B = (π−1(n),n) C = (n, π(n));
We divide the points of π in four regions, and individuate
two new points L, R;
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Proof.

If yL > yR we start from B with an east step in clockwise
order connecting all the points in each of the four regions;
otherwise we start from B with a west step.
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The algorithm returns a column-convex permutomino.
If π is square it is a convex permutomino.
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Further works and open problems

The number of column-convex permutominoes

Solve the functional equation:

F (x, y, z) = y +
yz

z − y
F (x, z, z) −

y2

z − y
F (x, y, y) +

xy

x − y
F (x, x, z) −

y2

x − y
F (y, y, z).

and determine the number of column-convex
permutominoes of size n.
Prove that the number of column-convex permutominoes
of size n behaves like:

fn ∼ k (n + 1)! hn ,

where k = 0.3419111 and h = 1.385933.
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Give an asymptotic estimation for the number of
permutominoes.
Enumerate permutominoes according to the number of
cells (area).
Enumeration of non convex permutominoes according to
the semi-perimeter.
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Extension of permutominoes

We have considered 3-dimensional permutominoes:
3-dimensional polygons having exactly two sides of the
boundary for each plane parallel to a coordinate plane.
As expected they are uniquely defined by three
3-dimensional permutations.
Work in progress with Duchi, Schaeffer: definition,
combinatorial properties and enumeration of 3-dimensional
permutominoes.
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Extension of permutominoes

This problem arises from a question posted by D. Eppstein,
who asked if xyz-graphs could be considered a
generalization of permutominoes to 3-dimensions.
xyz-graph: a set S of points in three dimensions such that
each axis-aligned line contains zero or two points of S.



Polyominoes determined by permutations

Further work

Extension of permutominoes

Extension of permutominoes

This problem arises from a question posted by D. Eppstein,
who asked if xyz-graphs could be considered a
generalization of permutominoes to 3-dimensions.
xyz-graph: a set S of points in three dimensions such that
each axis-aligned line contains zero or two points of S.

xyz graphs

Let S be a set of points in three dimensions
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Draw an edge between any two points on an axis-aligned line
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Extension of permutominoes

A talk by D. Eppstein
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