The identity transform of a permutation

Elena Barcucci ¹ Daniele Battaglino ² Erika Crociani ² Samanta Socci ²

June 25, 2012

¹ Dipartimento di Sistemi e Informatica, Firenze, Italy
² Dipartimento di Scienze Matematiche ed Informatiche, Siena, Italy
Theorem (Hall’s Theorem)

Let G be an abelian additive group of order n $G = \{a_1, ..., a_n\}$ and let $c_1, ..., c_n$ be elements of G, not necessarily distinct, then there is a permutation π of $\{a_1, ..., a_n\}$ such that $a_i + \pi(a_i) = c_i$ for $i = 1, ..., n$, where c_i are reordered properly, if and only if

$$\sum_{i=0}^{n} c_i = 0.$$
Hall’s Theorem

Example

We can consider $G = \mathbb{Z}_5$ and let $C = \{0, 2, 2, 3, 3\}$ be a multiset of G of length 5. It holds $\sum_{i=0}^{4} c_i = 2 \cdot 5 \equiv_5 0$, then, according to Hall’s Theorem, follows:

$$\begin{array}{c|cccc}
 id & 0 & 1 & 2 & 3 & 4 \\
 \pi_1 & 3 & 2 & 0 & 4 & 1 \\
 C_1 & 3 & 3 & 2 & 2 & 0 \\
 \pi_2 & 2 & 1 & 3 & 0 & 4 \\
 C_2 & 2 & 2 & 0 & 3 & 3
\end{array}$$

where C_1 and C_2 are rearrangements of C.
Hall’s Theorem

Example

We can consider $G = \mathbb{Z}_5$ and let $C = \{0, 2, 2, 3, 3\}$ be a multiset of G of length 5. It holds $\sum_{i=0}^{4} c_i = 2 \cdot 5 \equiv_5 0$, then, according to Hall’s Theorem, follows:

\[
\begin{array}{c|cccccc}
0 & 1 & 2 & 3 & 4 \\
3 & 2 & 0 & 4 & 1 \\
3 & 3 & 2 & 2 & 0 \\
\end{array}
\quad
\begin{array}{c|cccccc}
0 & 1 & 2 & 3 & 4 \\
2 & 1 & 3 & 0 & 4 \\
2 & 2 & 0 & 3 & 3 \\
\end{array}
\]

where C_1 and C_2 are rearrangements of C.

Remarks

- the rearrangement is not unique;

E.Barcucci,D.Battaglino,E.Crociani,S.Socci The identity transform of a permutation
Hall’s Theorem

Example

We can consider $G = \mathbb{Z}_5$ and let $C = \{0, 2, 2, 3, 3\}$ be a multiset of G of length 5. It holds $\sum_{i=0}^{4} c_i = 2 \cdot 5 \equiv_5 0$, then, according to Hall’s Theorem, follows:

<table>
<thead>
<tr>
<th>id</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>C_1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>id</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>π_2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>C_2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

where C_1 and C_2 are rearrangements of C.

Remarks

- the rearrangement is not unique;
- the proof given by Hall is a NON CONSTRUCTIVE proof, since it uses the *reductio ad absurdum*.
Goal

Find an alternative **CONSTRUCTIVE** proof of Hall’s Theorem.
Goal
Find an alternative CONSTRUCTIVE proof of Hall’s Theorem.

What we do
- We define a new set C_n.
Goal
Find an alternative CONSTRUCTIVE proof of Hall’s Theorem.

What we do
- We define a new set C_n.
- We find some combinatorial properties of C_n.
Goal
Find an alternative CONSTRUCTIVE proof of Hall’s Theorem.

What we do
- We define a new set \(C_n \).
- We find some combinatorial properties of \(C_n \).
- We give an idea for a new approach to Hall’s Theorem.
The identity transform of a permutation

Definition

Let π be a permutation, the *identity transform* of π is the vector:

$$C(\pi) = (0 + \pi(0), 1 + \pi(1), ..., (n - 1) + \pi(n - 1)).$$
Definition

Let \(\pi \) be a permutation, the *identity transform* of \(\pi \) is the vector:

\[
C(\pi) = (0 + \pi(0), 1 + \pi(1), \ldots, (n - 1) + \pi(n - 1)).
\]

Example

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi)</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(C(\pi))</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
The set C_n

Definition

We define C_n as:

$$C_n = \{ C(\pi) : \pi \in S_n \},$$

where S_n denotes the set of permutations of length n.
The set C_n

Definition

We define C_n as:

$$C_n = \{ C(\pi) : \pi \in S_n \},$$

where S_n denotes the set of permutations of length n.

Remarks

- There is a bijective correspondence between the elements in C_n and the permutations of length n.
The set C_n

Definition

We define C_n as:

$$C_n = \{ C(\pi) : \pi \in S_n \},$$

where S_n denotes the set of permutations of length n.

Remarks

- There is a bijective correspondence between the elements in C_n and the permutations of length n.
- If a vector $C = (c_0, \ldots, c_{n-1}) \in C_n$ then $\sum_{i=0}^{n-1} c_i \equiv_n 0$, but the converse does not hold.

 For example, with $n = 5$, one can check that the vector $(1, 2, 3, 0, 4)$ sums up to 0 modulo 5, but it is not an element of C_5.
Combinatorial properties of C_n

- Closure properties of C_n
Combinatorial properties of C_n

- Clousure properties of C_n
 - cyclic shift;
 - translation;
 - switch;
 - slide.
Combinatorial properties of C_n

- Clousure properties of C_n
 - cyclic shift;
 - translation;
 - switch;
 - slide.

- Characterizations of C_n
Combinatorial properties of C_n

- Clousure properties of C_n
 - cyclic shift;
 - translation;
 - switch;
 - slide.

- Characterizations of C_n
 - fixed points;
 - switch;
 - slide.
Cyclic shift

Definition

Let $C = (c_0, ..., c_{n-1})$, its \textit{i-th cyclic shift} $S^i(C)$ is the vector $S^i(C) = (c_{n-i}, ..., c_0, ..., c_{n-i-1})$.

E.Barcucci, D.Battaglino, E.Crociani, S.Socci

The identity transform of a permutation
Cyclic shift

Definition
Let $C = (c_0, \ldots, c_{n-1})$, its i-th cyclic shift $S^i(C)$ is the vector $S^i(C) = (c_{n-i}, \ldots, c_0, \ldots, c_{n-i-1})$.

Example
Let $C = (1, 1, 1, 0, 2)$ be a vector, $S^3(C) = (1, 0, 2, 1, 1)$.
Cyclic shift

Theorem

If \(C \in C_n \) then \(S^i(C) \in C_n \), for all \(i \leq n - 1 \).
Cyclic shift

Theorem

If \(C \in C_n \) then \(S^i(C) \in C_n \), for all \(i \leq n - 1 \).

Example

Let \(C = (1, 1, 1, 0, 2) \in C_5 \):

\[
\begin{array}{c|ccccc}
\text{id} & 0 & 1 & 2 & 3 & 4 \\
\pi & 1 & 0 & 4 & 2 & 3 \\
C(\pi) & 1 & 1 & 1 & 0 & 2 \\
\end{array}
\quad
\begin{array}{c|ccccc}
\text{id} & 0 & 1 & 2 & 3 & 4 \\
\pi' & 2 & 0 & 4 & 3 & 1 \\
C(\pi') & 2 & 1 & 1 & 1 & 0 \\
\end{array}
\]

Then the vector \(S^1(C) = (2, 1, 1, 1, 0) \in C_5 \).
Translation

Definition

Let \(C = (c_0, \ldots, c_{n-1}) \), we call \(C^+i = C + i = (c_0 + i, \ldots, c_{n-1} + i) \) the \(i \)-th translation of \(C \).
Definition

Let $C = (c_0, ..., c_{n-1})$, we call $C^i = C + i = (c_0 + i, ..., c_{n-1} + i)$ the i-th translation of C.

Example

Let $C = (1, 1, 1, 0, 2)$ be a vector, $C^{+3} = (4, 4, 4, 3, 0)$.
Theorem

If $C \in C_n$ then $C^+i \in C_n$, for each $i = 1, \ldots, n - 1$.

Translation
Theorem

If \(C \in C_n \) then \(C^+i \in C_n \), for each \(i = 1, \ldots, n - 1 \).

Example

Let \(C = (1, 1, 1, 0, 2) \in C_5 \):

\[
\begin{array}{c|cccccc}
\text{id} & 0 & 1 & 2 & 3 & 4 \\
\pi & 1 & 0 & 4 & 2 & 3 \\
C(\pi) & 1 & 1 & 1 & 0 & 2 \\
\end{array}
\quad \begin{array}{c|cccccc}
\text{id} & 0 & 1 & 2 & 3 & 4 \\
\pi + 3 & 4 & 3 & 2 & 0 & 1 \\
C^+3 & 4 & 4 & 4 & 3 & 0 \\
\end{array}
\]

Then the vector \(C^+3 = (4, 4, 4, 3, 0) \in C_5 \).
Definition

Let $C = (c_0, ..., c_{n-1})$, we say that
\[\psi_i(C) = (c_0, ..., c_{i+1} - 1, c_i + 1, ..., c_{n-1}) \]
is obtained from C by a switch of index i.

Switch

Definition
Let $C = (c_0, ..., c_{n-1})$, we say that

$$\psi_i(C) = (c_0, ..., c_{i+1} - 1, c_i + 1, ..., c_{n-1})$$

is obtained from C by a switch of index i.

Example
Let $C = (1, 1, 1, 0, 2)$ be a vector, $\psi_2(C) = (1, 1, 4, 2, 2)$.
Theorem

If $C \in C_n$ then $\psi_i(C) \in C_n$.
Theorem

If $C \in C_n$ *then* $\psi_i(C) \in C_n$.

Example

Let $C = (1, 1, 1, 0, 2) \in C_5$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>π</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$C(\pi)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Hence $\psi_2(C) = (1, 1, 4, 2, 2) \in C_5$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>π'</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>$C(\pi')$</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Anti-exceedances and Eulerian numbers

Definition
Let $C \in C_n$, we say that an index i is an antิ-exceedance if and only if $c_i < i$.

E.Barcucci,D.Battaglino,E.Crociani,S.Socci
Anti-exceedances and Eulerian numbers

Definition
Let $C \in C_n$, we say that an index i is an anti-exceedance if and only if $c_i < i$.

Example
The anti-exceedances of $C = (1, 1, 1, 0, 2) \in C_5$ are $i = 2, 3, 4$:

<table>
<thead>
<tr>
<th>id</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$C(\pi)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Anti-exceedances and Eulerian numbers

Definition
Let $C \in C_n$, we say that an index i is an anti-exceedance if and only if $c_i < i$.

Example
The anti-exceedances of $C = (1, 1, 1, 0, 2) \in C_5$ are $i = 2, 3, 4$:

<table>
<thead>
<tr>
<th>id</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$C(\pi)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Remark
Observe that if an index i is an anti-exceedance then $i + \pi(i) \geq n$.
Anti-exceedances and Eulerian numbers

Theorem

Let π be a permutation and let k be the number of the anti-exceedances of $C(\pi) = (c_0, \ldots, c_{n-1})$ and let $\sum_{i=0}^{n-1} c_i = l \cdot n$ then $k + l = n - 1$.
Theorem

Let π be a permutation and let k be the number of the anti-exceedances of $C(\pi) = (c_0, \ldots, c_{n-1})$ and let $\sum_{i=0}^{n-1} c_i = l \cdot n$ then $k + l = n - 1$.

Example

In the vector $(7, 7, 4, 2, 5, 8, 6, 3, 3)$ the number of anti-exceedances plus $l = 5$ (since $\sum_{i=0}^{n-1} c_i = 9 \cdot 5$) gives $n - 1 = 8$.

<table>
<thead>
<tr>
<th>id</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>$C(\pi)$</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
The number $C_{n,k}$ of vectors of C_n with k anti-exceedances is given by the Eulerian number $E_{n,k}$.

We find a correspondence between the set of vectors of C_n with k anti-exceedances and the set of permutations of S_n with k exceedances, which is enumerated by Eulerian numbers $E_{n,k}$.
Anti-exceedances and Eulerian numbers

Theorem

The number \(C_{n,k} \) of vectors of \(C_n \) with \(k \) anti-exceedances is given by the Eulerian number \(E_{n,k} \).

We find a correspondence between the set of vectors of \(C_n \) with \(k \) anti-exceedances and the set of permutations of \(S_n \) with \(k \) exceedances, which is enumerated by Eulerian numbers \(E_{n,k} \).

Example

Let \(C(\pi) = (1, 1, 1, 0, 2) \in C_5 \) with three anti-exceedances, then we build the corresponding permutation \(\pi' \) (the mirror image of \(\pi \)) with three exceedances by the bijection:

\[
\begin{array}{c|cccccc}
 & 0 & 1 & 2 & 3 & 4 \\
\hline
id & 0 & 1 & 2 & 3 & 4 \\
\pi & 1 & 0 & 4 & 2 & 3 \\
C(\pi) & 1 & 1 & 1 & 0 & 2 \\
\hline
\end{array}
\leftrightarrow
\begin{array}{c|cccccc}
 & 0 & 1 & 2 & 3 & 4 \\
\hline
id & 0 & 1 & 2 & 3 & 4 \\
\pi' & 3 & 2 & 4 & 0 & 1 \\
\end{array}
\]
Combinatorial characterizations of C_n

An index s is a fixed point of C if $s = c_s$.

Theorem

Let C be a vector and let $S^i(C)$ be the its i-th cyclic shift. Then, $C \in C_n$ if and only if $S^i(C)$ has a unique fixed point for all $i \leq n$.

Combinatorial characterizations of C_n

An index s is a fixed point of C if $s = s_c$.

Theorem

Let C be a vector and let $S^i(C)$ be the its i-th cyclic shift. Then, $C \in C_n$ if and only if $S^i(C)$ has a unique fixed point for all $i \leq n$.

Example

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S^1(C)$</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>$S^2(C)$</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$S^3(C)$</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>$S^4(C)$</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>$S^5(C)$</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Combinatorial characterizations of C_n

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S^1(C)$</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>$S^2(C)$</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$S^3(C)$</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>$S^4(C)$</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>$S^5(C)$</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Combinatorial characterizations of C_n

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>5</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^1(C)$</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$S^2(C)$</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$S^3(C)$</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>$S^4(C)$</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$S^5(C)$</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Remarks
- the fixed points are exactly the elements of the vector C;
Combinatorial characterizations of C_n

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S^1(C)$</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>$S^2(C)$</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$S^3(C)$</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>$S^4(C)$</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>$S^5(C)$</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Remarks
- the fixed points are exactly the elements of the vector C;
- the sequence of the fixed points of a vector $C(\pi) \in C_n$ is the vector $C(\pi^{-1})$ belonging to C_n.
Theorem

A vector $C \in C_n$ if and only if the zero vector is obtained from C by a finite sequence of switch operations.
Combinatorial characterizations of C_n

Theorem

A vector $C \in C_n$ if and only if the zero vector is obtained from C by a finite sequence of switch operations.

Example

\[
\begin{array}{cccccc}
1 & 1 & 1 & 0 & 2 \\
0 & 2 & 1 & 0 & 2 \\
0 & 0 & 3 & 0 & 2 \\
0 & 0 & 4 & 4 & 2 \\
0 & 0 & 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Combinatorial characterizations of C_n

Definition

A *slide operation* is a switch operation applied to an index $i = 0, \ldots, n-1$ such that $c_{i+1} - c_i \geq 2$.

If $i = n - 1$ the slide operation transforms the vector (c_0, \ldots, c_{n-1}) into $(c_{n-1} + 1, c_1, \ldots, c_{n-2}, c_0 - 1)$.
Combinatorial characterizations of C_n

Definition

A *slide operation* is a switch operation applied to an index $i = 0, \ldots, n - 1$ such that $c_{i+1} - c_i \geq 2$.

If $i = n - 1$ the slide operation transforms the vector (c_0, \ldots, c_{n-1}) into $(c_{n-1} + 1, c_1, \ldots, c_{n-2}, c_0 - 1)$.

Theorem

Let C be a vector such that $\sum_{i=0}^{n-1} c_i = k \cdot n$. Then, $C \in C_n$ if and only if it reduces to (k, \ldots, k) in a finite sequence of slide operations.
Example

Let \(C = (5, 3, 2, 4, 1, 3) \) be a vector, we have \(\sum_{i=0}^{n-1} c_i = 6 \cdot 3 \), we show a sequence of slide operations to obtain the vector \((3, 3, 3, 3, 3, 3)\):

\[
\begin{array}{ccccccc}
5 & 3 & 2 & 4 & 1 & 3 \\
5 & 3 & 3 & 3 & 1 & 3 \\
5 & 3 & 3 & 3 & 2 & 2 \\
3 & 3 & 3 & 3 & 2 & 4 \\
3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem.

Let $C = \{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\}$, $\sum_{i=0}^{9} c_i = 4 \cdot 10$.

So the idea is to start from the vector $(4, ..., 4)$ and to find a rearrangement of C, considering that each element c_i has to move exactly $|c_i - 4|$ positions.

Example

$\{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\}$

\[
\begin{array}{cccccccccc}
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\end{array}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem. Let $C = \{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\}$, $\sum_{i=0}^{9} c_i = 4 \cdot 10$. So the idea is to start from the vector $(4, \ldots, 4)$ and to find a rearrangement of C, considering that each element c_i has to move exactly $|c_i - 4|$ positions.

Example

\[
\begin{array}{cccccccccc}
1 & 2 & 2 & 3 & 4 & 4 & 5 & 5 & 5 & 9 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4
\end{array}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem. Let $C = \{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\}$, $\sum_{i=0}^{9} c_i = 4 \cdot 10$. So the idea is to start from the vector $(4, \ldots, 4)$ and to find a rearrangement of C, considering that each element c_i has to move exactly $|c_i - 4|$ positions.

Example

\[
\begin{array}{cccccccccc}
1 & 2 & 2 & 3 & 4 & 4 & 5 & 5 & 5 & 9 \\
4 & 4 & 4 & 4 & 3 & 5 & 4 & 4 & 4 & 4
\end{array}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem. Let $C = \{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\}$, $\sum_{i=0}^{9} c_i = 4 \cdot 10$. So the idea is to start from the vector $(4, \ldots, 4)$ and to find a rearrangement of C, considering that each element c_i has to move exactly $|c_i - 4|$ positions.

Example

\[
\begin{array}{cccccccccc}
1 & 2 & 2 & 3 & 4 & 4 & 5 & 5 & 5 & 9 \\
4 & 4 & 4 & 4 & 3 & 3 & 6 & 4 & 4 & 4 \\
\end{array}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem. Let \(C = \{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\} \), \(\sum_{i=0}^{9} c_i = 4 \cdot 10 \). So the idea is to start from the vector \((4, \ldots, 4)\) and to find a rearrangement of \(C \), considering that each element \(c_i \) has to move exactly \(|c_i - 4|\) positions.

Example

\[
\begin{array}{cccccccc}
1 & 2 & 2 & 3 & 4 & 4 & 5 & 5 \\
4 & 4 & 4 & 4 & 3 & 3 & 7 & 4 \\
\end{array}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem. Let \(C = \{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\} \), \(\sum_{i=0}^{9} c_i = 4 \cdot 10 \). So the idea is to start from the vector \((4, \ldots, 4)\) and to find a rearrangement of \(C \), considering that each element \(c_i \) has to move exactly \(|c_i - 4| \) positions.

Example

\[
\begin{array}{ccccccccc}
1 & 2 & 2 & 3 & 4 & 4 & 5 & 5 & 5 & 9 \\
4 & 4 & 4 & 3 & 3 & 3 & 3 & 8 & 4 \\
\hline
4 & 4 & 4 & 3 & 3 & 3 & 3 & 8 & 4 \\
\hline
\end{array}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem. Let $C = \{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\}$, $\sum_{i=0}^{9} c_i = 4 \cdot 10$. So the idea is to start from the vector $(4, \ldots, 4)$ and to find a rearrangement of C, considering that each element c_i has to move exactly $|c_i - 4|$ positions.

Example

\[\{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\}\]

\[
\begin{array}{cccccccccc}
4 & 4 & 4 & 4 & 3 & 3 & 3 & 3 & 3 & 9 \\
\end{array}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem. Let $C = \{1, 2, 2, 3, 4, 4, 5, 5, 9\}$, $\sum_{i=0}^{9} c_i = 4 \cdot 10$. So the idea is to start from the vector $(4, \ldots, 4)$ and to find a rearrangement of C, considering that each element c_i has to move exactly $|c_i - 4|$ positions.

Example

\[
\begin{array}{cccccccc}
1 & 2 & 2 & \beta & 4 & 4 & 5 & 5 & 5 & 9 \\
4 & 4 & 4 & 4 & 3 & 3 & 3 & 3 & 3 & 9 \\
\end{array}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem. Let $C = \{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\}$, $\sum_{i=0}^{9} c_i = 4 \cdot 10$. So the idea is to start from the vector $(4, \ldots, 4)$ and to find a rearrangement of C, considering that each element c_i has to move exactly $|c_i - 4|$ positions.

Example

$$\{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\}$$

$$4 \ 4 \ 4 \ 4 \ 3 \ 3 \ 3 \ 3 \ 3 \ 9$$

$$4 \ 4 \ 4 \ 4 \ 3 \ 2 \ 2 \ 5 \ 3 \ 9$$

E. Barucci, D. Battaglino, E. Crociani, S. Socci

The identity transform of a permutation
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem.

Let \(C = \{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\} \), \(\sum_{i=0}^{9} c_i = 4 \cdot 10 \).

So the idea is to start from the vector \((4, \ldots, 4)\) and to find a rearrangement of \(C \), considering that each element \(c_i \) has to move exactly \(|c_i - 4|\) positions.

Example

\[
\begin{align*}
\{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\} \\
4 & 4 & 4 & 4 & 3 & 3 & 3 & 3 & 9 \\
4 & 4 & 4 & 4 & 3 & 2 & 2 & 5 & 3 & 9
\end{align*}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem. Let $C = \{1, 2, 2, 3, 4, 4, 5, 5, 5, 9\}, \sum_{i=0}^{9} c_i = 4 \cdot 10$. So the idea is to start from the vector $(4, \ldots, 4)$ and to find a rearrangement of C, considering that each element c_i has to move exactly $|c_i - 4|$ positions.

Example

\[
\begin{array}{cccccccccc}
1 & 2 & 2 & 3 & 4 & 4 & 5 & 5 & 5 & 9 \\
4 & 4 & 4 & 4 & 3 & 3 & 3 & 3 & 9 \\
4 & 4 & 4 & 4 & 3 & 2 & 2 & 5 & 3 & 9 \\
4 & 4 & 4 & 2 & 5 & 2 & 2 & 5 & 3 & 9 \\
\end{array}
\]
A new approach to Hall’s Theorem

We believe that the result of the Theorem relating to the slide operation may be applied in order to give an efficient proof of Hall’s Theorem. Let \(C = \{1, 2, 2, 3, 4, 4, 5, 5, 9\} \), \(\sum_{i=0}^{9} c_i = 4 \cdot 10 \).

So the idea is to start from the vector \((4, \ldots, 4)\) and to find a rearrangement of \(C \), considering that each element \(c_i \) has to move exactly \(|c_i - 4| \) positions.

Example

\[
\begin{align*}
\{ &1, 2, 2, 3, 4, 4, 5, 5, 9 \} \\
4 &4 4 4 3 3 3 3 9 \\
4 &4 4 4 3 2 2 5 3 9 \\
4 &4 4 2 5 2 2 5 3 9 \\
4 &4 1 5 5 2 2 5 3 9 \\
\end{align*}
\]
Further Work

Let Q_n be the set of vectors of \mathbb{Z}_n having zero-sum.

Definition

Let σ, π be two permutations of S_n, the σ-transform of π is the vector

$$C_\sigma(\pi) = (\sigma(1) + \pi(1), \ldots, \sigma(n - 1) + \pi(n - 1)).$$
Further Work

Let Q_n be the set of vectors of Z_n having zero-sum.

Definition

Let σ, π be two permutations of S_n, the σ-transform of π is the vector

$$C_\sigma(\pi) = (\sigma(1) + \pi(1), \ldots, \sigma(n - 1) + \pi(n - 1)).$$

Proposition

For any element $Q \in Q_n$, there are two permutations σ, π such that $Q = C_\sigma(\pi)$, i.e. $Q_n = \{C_\sigma(\pi) : \sigma, \pi \in S_n\}$.
Further Work

Let Q_n be the set of vectors of \mathbb{Z}_n having zero-sum.

Definition

Let σ, π be two permutations of S_n, the σ-transform of π is the vector

$$C_{\sigma}(\pi) = (\sigma(1) + \pi(1), \ldots, \sigma(n - 1) + \pi(n - 1)).$$

Proposition

For any element $Q \in Q_n$, there are two permutations σ, π such that $Q = C_{\sigma}(\pi)$, i.e. $Q_n = \{C_{\sigma}(\pi) : \sigma, \pi \in S_n\}$.

Remark

If we choose $\sigma = id = (0, 1, \ldots, n)$, we have the ordinary identity transform $C(\pi)$ of π.

E. Barucci, D. Battaglino, E. Crociani, S. Socci
Remarks

- Q_n is an abelian group, where the (commutative) sum \oplus of two elements is defined as the sum term by term of the two vectors, the neutral element of Q_n is $(0, \ldots, 0)$, and the opposite of a generic element $C = (c_0, \ldots, c_{n-1}) \in Q_n$ is $-C = (-c_0, \ldots, -c_{n-1})$;
Remarks

- Q_n is an abelian group, where the (commutative) sum \oplus of two elements is defined as the sum term by term of the two vectors, the neutral element of Q_n is $(0, \ldots, 0)$, and the opposite of a generic element $C = (c_0, \ldots, c_{n-1}) \in Q_n$ is $-C = (-c_0, \ldots, -c_{n-1})$;
- Q_n is also closed under scalar product: given any $h \in Z_n$, $h \cdot C = (hc_0, \ldots, hc_{n-1}) \in C_n$;
Remarks

- Q_n is an abelian group, where the (commutative) sum \oplus of two elements is defined as the sum term by term of the two vectors, the neutral element of Q_n is $(0, \ldots, 0)$, and the opposite of a generic element $C = (c_0, \ldots, c_{n-1}) \in Q_n$ is $-C = (-c_0, \ldots, -c_{n-1})$;
- Q_n is also closed under *scalar product*: given any $h \in \mathbb{Z}_n$, $h \cdot C = (hc_0, \ldots, hc_{n-1}) \in C_n$;
- C_n is not a subgroup of Q_n since it is not closed under the sum \oplus.
Further Work

The relation between C_n and Q_n

Proposition

For every n, we have $Q_n = C_n \ominus C_n$, i.e. a vector Q belongs to Q_n if and only if it can be expressed as the difference of two elements C_1, C_2 of C_n.
Further Work
The relation between C_n and Q_n

Proposition

For every n, we have $Q_n = C_n \ominus C_n$, i.e. a vector Q belongs to Q_n if and only if it can be expressed as the difference of two elements C_1, C_2 of C_n.

Example

Let $Q = (0, 1, 2, 4, 3) \in Q_5$ and $Q \notin C_5$.

| π_1 | 1 3 0 4 2 | id | 0 1 2 3 4 | id | 0 1 2 3 4 |
|--|--|--|--|--|
| π_2 | 4 3 2 0 1 | π_1 | 1 3 0 4 2 | $-\pi_2$ | 1 2 3 0 4 |
| Q | 0 1 2 4 3 | C_1 | 1 4 2 2 1 | C_2 | 1 3 5 3 3 |

Thus $Q = C_1 \ominus C_2$.
Further Work
What about $C_n \cap S_n$?

Remarks

- If n is even then S_n and C_n are disjoint.
Further Work

What about $C_n \cap S_n$?

Remarks

- If n is even then S_n and C_n are disjoint.
- A permutation $\pi \in C_n \cap S_n$ if and only if for all i, k we have $\pi(i + k) - \pi(i) \neq k$.
Further Work
What about $C_n \cap S_n$?

Remarks

- If n is even then S_n and C_n are disjoint.
- A permutation $\pi \in C_n \cap S_n$ if and only if for all i, k we have $\pi(i + k) - \pi(i) \neq k$.
- The set $C_n \cap S_n$ is closed under inversion (permutation).
Further Work
What about \(C_n \cap S_n \)?

Remarks

- If \(n \) is even then \(S_n \) and \(C_n \) are disjoint.
- A permutation \(\pi \in C_n \cap S_n \) if and only if for all \(i, k \) we have \(\pi(i + k) - \pi(i) \neq k \).
- The set \(C_n \cap S_n \) is closed under inversion (permutation).
- For every \(h \) which does not divide \(n \), the vector \(h \cdot id \) and all its cyclic shifts belong to \(C_n \cap S_n \).

 With \(n = 5 \), \(id = (0, 1, 2, 3, 4) \notin C_5 \cap S_5 \), while

 \(id \oplus id \oplus id = (0, 3, 1, 4, 2) \in C_5 \cap S_5 \).

 There are elements in \(C_n \cap S_n \) which are not of type \(h \cdot id \) (or any of its cyclic shifts), for instance \((0, 3, 1, 6, 5, 2, 4) \in C_7 \cap S_7 \).